Papers in reviewed
journals - Articles dans des revues à comité de lecture
L. Bruneau, S. De Bièvre, "A Hamiltonian model for linear friction in a homogeneous medium", Comm. Math. Phys. 229, 511-542 (2002).
L. Bruneau, J. Derezinski, "Pauli-Fierz Hamiltonians defined as quadratic forms", Reports on Math. Phys. 54, 169-199 (2004).
L. Bruneau, A. Joye, M. Merkli, "Asymptotics of repeated interaction quantum systems", J. Func. Anal. 239, 310-344 (2006).
L. Bruneau, "Ground state for a quantum Hamiltonian model describing friction", Canadian Journal of Maths. 59, vol 5, 897-916 (2007).
L. Bruneau, J. Derezinski, "Bogoliubov Hamiltonians and one-parameter groups of Bogoliubov transformations", J. Math. Phys. 48, vol 2 (2007).
L. Bruneau, F. Germinet, "On the singularity of random matrices with independent entries", Proc. Amer. Math. Soc. 137, vol 3, 787-792 (2009).
L. Bruneau, A. Joye, M. Merkli, "Random repeated interaction quantum systems", Comm. Math. Phys. 284, 553-581 (2008).
L. Bruneau, A. Joye, M. Merkli, "Infinite products of random matrices and repeated interaction dynamics", Ann. Inst. Henri Poincaré Probab. Stat., 46, vol 2, 442-464 (2010).
L. Bruneau, C.-A. Pillet, "Thermal relaxation of a QED cavity", J. Stat. Phys. 134, vol 5-6, 1071-1095 (2009).
L. Bruneau, A. Joye, M. Merkli, "Repeated and continuous interactions in open quantum systems", Annales Henri Poincaré 10, vol 7, 1251-1284 (2010).
L. Bruneau, J. Derezinski, V. Georgescu, "Homogeneous Shrödinger operators on half-line", Annales Henri Poincaré 12, vol 3, 547-590 (2011).
L. Bruneau, S. De Bièvre, C.-A. Pillet, "Scattering induced current in a tight-binding band", J. Math. Phys. 52, 022109 (2011).
L. Bruneau, V. Jaksic, C.-A. Pillet, "Landauer-Büttiker formula and Schödinger conjecture", Comm. Math. Phys. 319, issue 2, 501-513 (2013).
L. Bruneau, A. Joye, M. Merkli, "Repeated interactions in open quantum systems", J. Math. Phys. 55, 075204 (2014).
L. Bruneau, "Mixing properties of the one-atom maser", J. Stat. Phys. 155, vol 5, 888-908 (2014).
L. Bruneau, V. Jaksic, Y. Last, C.-A. Pillet, "Landauer-Büttiker and Thouless conductance", Comm. Math. Phys. 338, issue 1, 347-366 (2015).
L. Bruneau, V. Jaksic, Y. Last,
C.-A. Pillet, "Conductance and
absolutely continuous spectrum of 1D samples", Comm.
Math. Phys. 344,
issue 3, 959-981 (2016).
L. Bruneau, V. Jaksic, Y. Last, C.-A. Pillet, "Crystalline conductance and absolutely continuous spectrum of 1D samples", Lett. Math. Phys. 106, vol 6, 787-797 (2016).
J.-F. Bougron, L. Bruneau, "Linear response theory and entropic fluctuations in repeated interaction quantum systems", J. Stat. Phys. 181, vol 5,1636-1677 (2020).
T. Benoist, L. Bruneau, V.
Jaksic, A. Panati, C.-A. Pillet, "A
note on two-times measurement entropy production and
modular theory", Lett.
Math. Phys. 114,
32 (2024).
T. Benoist, L. Bruneau, V.
Jaksic, A. Panati, C.-A. Pillet, "On the
thermodynamic limit of two-times measurement entropy
production", To appear in Rev. Math. Phys. Preprint arXiv
2402.09380 (2024).
T. Benoist, L. Bruneau, C.
Pellegrini, "Quantum
trajectory of the one-atom maser", Preprint arXiv
2403.20094 (2024).
T. Benoist, L. Bruneau, V. Jaksic, A. Panati, C.-A. Pillet, "Entropic Fluctuations in Statistical Mechanics II. Quantum Dynamical Systems", Preprint arXiv 2409.15485 (2024).
T. Benoist, L. Bruneau, V. Jaksic, A. Panati, C.-A. Pillet, "Entropic Fluctuation Theorems for the Spin-Fermion model", Preprint arXiv 2411.14841 (2024).
Notes and proceedings
L. Bruneau, "The ground state problem for a quantum Hamiltonian describing friction", C.R. Acad. Sci. Paris., Ser I 339, 151-156 (2004).
L. Bruneau, "Repeated interaction quantum systems", Proceedings of the IRS conference 2007, Markov Process. Related Fields. 14, vol 3, 345-364 (2008).
L. Bruneau, V. Jaksic, Y. Last, C.-A. Pillet, ''What is AC spectrum?'', arXiv 1602.01893. Expanded version of a contribution to the Proceedings of ICMP 2015.
Others
Habilitation thesis
Etude mathématique de quelques systèmes quantiques ouverts. Résumé
My PhD
Modèle Hamiltonien pour le frottement linéaire en milieu homogène.
Résumé
Retour à la page
principale