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Abstract

A quantum system S interacts in a successive way with elements £ of a chain of identical independent
quantum subsystems. Each interaction lasts for a duration 7 and is governed by a fixed coupling between S
and £. We show that the system, initially in any state close to a reference state, approaches a repeated inter-
action asymptotic state in the limit of large times. This state is T-periodic in time and does not depend on the
initial state. If the reference state is chosen so that S and £ are individually in equilibrium at positive tem-
peratures, then the repeated interaction asymptotic state satisfies an average second law of thermodynamics.
© 2006 Published by Elsevier Inc.
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1. Introduction

In this introduction we outline our main results and the relevant ideas of their proofs.
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Suppose a quantum system S interacts with another one, £, during a time interval [0, 7),
where 7 > 0 is fixed. Then, for times [z, 27), S interacts in the same fashion with another copy
of £, and so on. The assembly of the systems £ (which are not directly coupled among each
other) is called a chain, C = & + £ + - --. The system S + C, with an interaction as described
above, is called a repeated interaction quantum system. One may think of S as being the system
of interest, like a particle enclosed in a container, and of C as a chain of measuring apparatuses
£ that are brought into contact with the particle in a sequential manner.

The theoretical and practical importance of repeated interaction quantum systems is exempli-
fied by systems of radiation—matter coupling, where atoms interact with modes of the quantized
electromagnetic field. In this setting, the system S describes one or several modes of the field in
a cavity and the chain C represents a beam of atoms & that is injected into the cavity. So-called
“One-Atom Masers,” where the beam in tuned in such a way that at each given moment a single
atom is inside a microwave cavity and the interaction time 7 is the same for each single atom,
have been experimentally realized in laboratories [9,12].

The system described above has been proposed as a tool for engineering of quantum states
of the radiation field. Two-level atoms are injected into a cavity, one by one, where they interact
for a fixed duration with a mode of the electromagnetic field (e.g. through the Jaynes—Cummings
Hamiltonian), before leaving the cavity. In the limit of infinitely many interactions (i.e., as time
increases to infinity) the field mode can be driven to an arbitrary state (starting from an arbitrary
initial state), provided the atoms in the beam are prepared in a suitable way before the interaction,
see [11,13] and the references therein. The fidelity of the target state preparation reaches 100%
exponentially fast in time.

In this respect, we obtain as a byproduct of our main result—the construction of the asymp-
totic state—the following complementary result. We show explicitly in examples (Section 3) that
the preparation of an arbitrary target state of S is achieved, exponentially fast in time, for any
state of the incoming atoms and for arbitrary initial states of S, by varying the coupling functions
of the interaction (form factors).

Repeated quantum interaction models also appeared recently in the study of modelization of
open quantum systems by means of quantum noises, see [3] and references therein. Any (con-
tinuous) master equation governing the dynamics of states on a system S can be viewed as the
projection of a unitary evolution driving the system S and a field of quantum noises in interac-
tion. It is shown in [3] how to recover such continuous models as some limit of a discretization
given by a repeated quantum interaction model. The limit considered involves the time step 7, the
strength of the interaction A and a notion of distance between the elements of the chain in an in-
tricate way. We note also that the effective evolution of the small system S in a quantum repeated
interaction model has been investigated in certain regimes of the parameters T and A related to the
Van Hove limit in [2]. The result is a continuous Markovian effective evolution, driven by certain
Lindblad generators depending on the interaction and on the asymptotic regimes considered. By
contrast, in the present work we do not invoke any Van Hove limit type argument.

Our goal is to study the large time behaviour of repeated interaction quantum systems, and
in particular, to describe the effect of the repeated interaction on the system S. One of our main
results is the construction of the time-asymptotic state, which we call a repeated interaction
asymptotic state (RIAS).

States of S and £ are represented by vectors (or density matrices) in the Hilbert spaces
Hs and Hg, respectively. We assume that dimHs < oo, while dimHg < co. The observ-
ables of S and £ are bounded operators, they form the (von Neumann) algebras MMs C B(Hs)
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and 9MM¢e C B(Hg). Observables evolve according to the Heisenberg dynamics ¢ +— TfS (As) and
t— ‘L'é (Ag), where tfs and r;: are groups of x-automorphisms of s and Mg, respectively.
We assume that there are distinguished “reference” states, represented by the vectors 25 €
‘Hs and £2¢ € Hg, and for the purposes of the introduction, we shall take §25, £2¢ to be equilib-
rium states with respect to 'L'fs., ré, for inverse temperatures Bs, Bg, respectively. It is useful to
pass to a description of the dynamics of vectors in Hs, Hge (Schrodinger dynamics). There are
selfadjoint operators Lg, Lg, called the standard Liouville operators, uniquely specified by

th(A)=eMAe7 4 and  Ly2s =0, (1.1

where # stands here for either S or £.

The Hilbert space of the entire system is given by H = Hs ® H¢, where H, the Hilbert space
of the chain, is the infinite tensor product ®m>1 ‘He. The non-interacting dynamics is defined
on the algebra Ms @),,,>1 Me by 15 &),,>1 T¢-

We consider interactions of the following kind. Fix an interaction time 7 > 0. During the
interval [0, 7), S interacts with the first element £ in the chain C, while all other £’s evolve freely.
The interaction is specified by an operator V € Mg ® Mg. In the next time interval, [, 27),
S interacts with the second element in the chain, through the same interaction operator V, and
all other elements evolve freely, and so on. For ¢ > 0 we set

t=m)T +s(t), (1.2)

where m(t) is the integer measuring how many complete interactions of duration t have taken
place at the instant #, and where 0 < s(¢) < 7. We define the repeated interaction (Schrodinger)
dynamics, for t > 0, ¥ € H, by

Uri () = e 5 OLnws1e=itlne  o=itLiy, (1.3)
where
Ly=Ln+Y_ Lex (1.4)
k#m

is the generator of the total dynamics during the time interval [(m — 1), mt). We have intro-
duced L,,, the operator on H that acts trivially on all elements of the chain except for the mth
one, and which, on the remaining part of H (which is just Hs ® Hg), acts as

L=Ls+Le+V. (1.5)

In (1.4), Lg ; denotes the operator on H that acts non-trivially only on the kth element of the
chain, on which it equals Lg.

A state @ given by a density matrix on H is said to be normal. Our goal is to understand the
time-asymptotics (f — 00) of expectations

o(Uri(1)* OURi(1)) = w(a; (0)) (1.6)

for normal states w and for certain classes of “observables” O. As mentioned above, we may
regard S as the system of interest, so we certainly want to treat the case O € 9tg. Another type
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of physical observable is of interest as well. Imagine we want to measure the variation, say, of the
energy of S at a certain moment in time. This measuring process involves the system S, but also
the element of the chain that is in contact with S at the given moment. We call such an observable
an instantaneous observable. Various generalizations can be considered, see Section 2, but we
limit our discussion in this introduction to the two kinds of observables just described.

Asymptotic state

Let O be an instantaneous observable, determined by As and Ag. This means that at time
t =m)t +s(t), (1.2), O measures As ® Ag on the system S + &, where & is the (m(z) + 1)th
element in the chain C. We show in Theorem 2.3 that, under a natural assumption on the interac-
tion, we have

| (ki (0)) — wi (Pag (As ® Ag) P)| — 0, (1.7)

as t — 0o, where w, is a state on 91s which does not depend on w (cf. (1.13)), and where

P =145 Q) P (1.8)
m>1

with Pg, denoting the orthogonal projection onto C§2¢. We identify the range of P with Hs.
Relation (1.7) shows that the expectation of an instantaneous observable in any normal initial
state approaches a t-periodic limit function (¢ — s(¢) is T-periodic). The speed of convergence
in (1.7) is exponential, ~ e ~/¥/7, where y > 0 is a constant depending on the interaction.

The restriction of the RIAS to the algebra of instantaneous observables characterized by
Ags € Ms and Ag € Mg is the t-periodic state

As® Ag > wi(Pap! (As ® Ag)P) (1.9)
on Ms @ Mg, see (1.7) (and (2.26) for the definition of the RIAS acting on more general ob-
servables).

The above-mentioned assumption on the interaction is an ergodicity assumption on the dy-
namics reduced to the system S. More precisely, we construct a (non-symmetric) operator K on
‘H such that

Paki(As)P2s = (P P)" PesOK 45 P02, (1.10)

with the property
Pe"KPRs = 02s. (1.11)
We assume that 1 is a simple eigenvalue of Pe!”® P, and that all the other eigenvalues lie strictly

inside the complex unit disk. (We prove in Section 3 that this holds for concrete models.) As a
consequence of this assumption, we have

(P P s 125) (2%,

(1.12)
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as t — oo, where £25 is the unique vector in Hgs satisfying (Pei™K P)*2% = 25 and
(.Q:g, $2s) = 1. To arrive at result (1.7), where

w4 () = (2%, - 2s), (1.13)

we use (1.12) together with an argument involving a cyclicity property of 2s.

Our approach is constructive in the sense that the asymptotic characteristics of the system,
such as the state w_, the speed of convergence y, and the asymptotic dynamics in (1.7) can be
calculated by rigorous perturbation theory (in V).

Correlations and reconstruction of initial state

The (time dependent) asymptotic expectations of observables do not depend on the initial state
of the system, cf. (1.7). However, asymptotic correlations do, and together with the asymptotic
expectations they permit to reconstruct the initial state in the following way.

Take a normal state w, an instantaneous observable O determined by As € Mg, Ag € Mg,
and an observable A € 9. We show in Theorem 2.5 that

|0(Adk;(0)) — w(A)ws (Pag!’ (As ® Ag)P)| — 0 (1.14)

as t — oo (exponentially fast). According to (1.7) and (1.14), knowledge of the asymptotic
correlation function C4(¢; A, O), and of the asymptotic expectation E (¢; O), determined re-
spectively by

Jim | (Aag (0)) —=C1(t: A, 0)| =0 and  lim [w(eg,(0)) — E4 (11 0)[ =0,

allows for a reconstruction of the initial state w according to

L Cu(t:A,0)

w(A) = 5.6 0) (1.15)

Energy, entropy, average 2nd law of thermodynamics for RIAS

The formal quantity aﬁl(zm(,)ﬂ), where L, is given by (1.4), has a well-defined variation
in t. It is not hard to see by explicit calculation that this variation is zero in all time intervals
[(m — 1), m7), and that it undergoes a jump

Jj(m) = ot Vins1 — Vi)

as time passes the moment mt. Here, Vi denotes the operator V acting non-trivially only on Hg
and the kth element H¢ of the chain Hilbert space . We interpret the variation of the above
formal quantity as the (time dependent) observable of variation in total energy of the system.

We show in Section 2.4.1 that for any normal initial state w, the variation in energy during
any time interval of length t takes the asymptotic expectation value w4 (j), where

T
j+=PVP—Pag (V)P = —i/ Pay([Ls+ Lg, V1) Pds. (1.16)
0
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(Here and in the rest of the paper we understand commutators to be defined in the form sense,
but none of our arguments involve delicate domain questions with regards to commutators.) We
define the (average) asymptotic energy production dE 4 to be the change in energy during any
interval of duration 7, divided by 7, in the limit of large times. This quantity is given by

1
dE4 = ;w+(j+) (1.17)

and is independent of the initial state w. We show in Section 2.4.2 that wy (j+) > 0.

Denote by wy the state on 2 determined by the vector £2s ®m>1 2¢ € H, and let Ent(w|wp)
denote the relative entropy of the normal state @ with respect to wg. We think it is natural to
define the entropy as a non-negative quantity, and our definition of it differs by a sign from the
one given in [4].! We define the (average) asymptotic entropy production dS to be the change
of (relative) entropy in any interval of duration 7, divided by 7, in the limit of large times. We
prove in Section 2.4.2 that

ds; = ﬁfmm, (1.18)

where f¢ is the inverse temperature of the elements in the chain. The asymptotic entropy pro-
duction does not depend on the initial state w. We may combine (1.17) and (1.18) to arrive at an
average 2nd law of thermodynamics for repeated interaction quantum systems,

dE, = TedS,, (1.19)

where T¢ = 1/f¢ is the temperature of the chain. Relation (1.19) is independent of the initial
state of the system, and it holds for any repeated interaction system (V and 7).

2. Model and results
2.1. Repeated interaction models

The models we consider consist of a system S which is coupled to achainC =&+ £+ - - of
identical elements £. We describe S and £ as W*-dynamical systems (s, ré) and (Mg, 'L’é-),
where Mg, Mg are von Neumann algebras “of observables” acting on the Hilbert spaces ‘Hs,
He, respectively, and where rfs. and ré are (o -weakly continuous) groups of x-automorphisms
describing the Heisenberg dynamics. In this paper, we consider the situation dimHg < oo and
dimHg < o0.

We assume that there are distinguished vectors 25 € Hs and £2¢ € Hg, determining states
on Mg and Mg which are invariant with respect to r"s and 7,'2-, respectively, and we assume that
§2s and 2¢ are cyclic and separating for s and Mg, respectively. One may typically think of
these distinguished vectors as being KMS vectors.

The Hilbert space of the chain C is defined to be the infinite tensor product

He = ®Hg 2.1

m>1

1 For a finite system we have Ent(w|wg) = Tr(p(log p —1log pg)), where p and pg are density matrices determining the
states w and wyq, respectively, and where pg > 0.

-
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with respect to the reference vector

In other words, H¢ is obtained by taking the completion of the vector space of finite linear com-
binations of the form ®m>] Y, where ¥, € He, ¥,y = §2¢ except for finitely many indices, in
the norm induced by the inner product

<® Vin, ®xm> =] TWm: ) 23)

We introduce the von Neumann algebra

Me = X) Me (2.4)
m>1

acting on ®m>1 ‘Hg, which is obtained by taking the weak closure of finite linear combinations
of operators ®m> 1 Am, where A;, € Mg and A, = 194, except for finitely many indices.

The operator algebra containing the observables of the total system is the von Neumann alge-
bra

M=Ms @ M (2.5)
which acts on the Hilbert space
H=Hs®Hc. (2.6)

The repeated interaction dynamics of observables in 91 is characterized by an interaction time
0 < 7 < 00 and a selfadjoint interaction operator

VeMs Q@ Me. 2.7)

For times ¢t € [t(m — 1), tm), where m > 1, S interacts with the mth element of the chain,
while all other elements of the chain evolve freely (each one according to the dynamics tg). The
interaction of S with every element in the chain is the same (given by V).

Let Ls and Lg be the standard Liouville operators (“positive temperature Hamiltonians,” cf.
references of [5,8]), uniquely characterized by the following properties: Ls (where # =8, £) are
selfadjoint operators on Hy which implement the dynamics T,

Th(A) =et¥ AT VA € My, (2.8)
and
Ly§24 =0. (2.9)
We define the selfadjoint operator

L=Ls+Lg+V, (2.10)
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omitting trivial factors 15 or 1¢ (by Lgs in (2.10) we really mean Ls ® 1g, etc.). L generates
the automorphism group eL - e L of M5 ® My, the interacting dynamics between S and
an element £ of the chain C. The explicit form of the operator V is dictated by the underlying
physics, we give some examples in Section 3.

For m > 1 let us denote by

Zm =Ln+ Z LS,k (2.11)
k#m

the generator of the total dynamics during the interval [(m — 1)t, m7). We have introduced L,,,
the operator on 7 that acts trivially on all elements of the chain except for the mth one. On the
remaining part of the space (which is isomorphic to Hs ® Heg), L, acts as L, (2.10). We have
also set Lg ; to be the operator on H that acts non-trivially only on the kth element of the chain,
on which it equals Lg. Of course, the infinite sum in (2.11) must be interpreted in the strong
sense on H.

Decompose t € R as

t=m()t +5(1), (2.12)

where m (t) is the integer measuring the number of complete interactions of duration t the system
S has undergone at time ¢, and where 0 < s(¢) < 7. The repeated interaction dynamics of an
operator A on H is defined by

ag(A) = Uri())* AUgri(1), (2.13)
where
Uri(t) = e 5OLnw1g=itLnw | e=itLi (2.14)

defines the Schrodinger dynamics on H. According to this dynamics S interacts in succession,
for a fixed duration t and a fixed interaction V, with the first m (¢) elements of the chain, and for
the remaining duration s(¢) with the (m(¢) + 1)th element of the chain. Being the propagator of
a “time-dependent Hamiltonian” (which is piecewise constant), Urj(¢) does not have the group
property in ¢.

Our goal is to examine the large time behaviour of expectation values of certain observables
in normal states @ on 91 (states given by a density matrix on H). The system S feels an effective
dynamics induced by the interaction with the chain C. Under a suitable ergodicity assumption
on this effective dynamics the small system is driven to an asymptotic state, as time increases.
We will express the effective dynamics and the ergodic assumption using the modular data of the
pair (Ms @ Me, 25 ® L2¢).

Let J and A denote the modular conjugation and the modular operator associated to (Ms ®
Mg, 25 ® 2¢) [4]. We assume that

(A) AZVA~I2 e Mg @ Me

© 0O N O O A~ WO N =
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and we introduce the operator
K=L—JA?vA~1/2], (2.15)

called a C-Liouville operator [5,8]. It generates a strongly continuous group of bounded opera-
3 . . : 172 —-1/2 . .
tors, denoted ¢!’ X |, satisfying || X || < el!l2 2VATI2I The main feature of the operator K is that
¢’ implements the same dynamics as e’Z on Mg ® Mg (since the difference K — L belongs

to the commutant M ® M), and that
KQs5® R2¢=0. (2.16)
Relation (2.16) follows from assumption (A), definition (2.15) and the properties
ATV27=JAY? and JAYPARs® 2 = A*Rs ® Q2.

forany A € Ms @ Me.
Let

P =1y, ®[2¢)(S2c] (2.17)

be the orthogonal projection onto Hs ® C2¢ = Hg, where §2¢ is given in (2.2). If B is an
operator acting on H then we identify P B P as an operator acting on Hs. We have

Proposition 2.1. There is a constant C < 0o such that |(PelK pym IBHs) < C, forallt € R,
m > 0. In particular, spec(Pe'X P) C {z € C | |z| < 1} and all eigenvalues lying on the unit
circle are semisimple.

We give a proof of Proposition 2.1 in Section 4.3. Relation (2.16) implies that for all 7 € R,
Pe'K pRg = Q5. Our assumption (E) on the effectiveness of the coupling is an ergodicity
assumption on the discrete dynamics generated by

M=M()=Pe™Xp. (2.18)

(E) The spectrum of M on the complex unit circle consists of the single eigenvalue {1}. This
eigenvalue is simple (with corresponding eigenvector £25).

Assumption (E) guarantees that the adjoint operator M* has a unique invariant vector, called 23
(normalized as (£25, 2s5) = 1), and that

lim M" = :=|2s)(22%] (2.19)

m—0oQ

in the operator sense, where m is the rank one projection which projects onto C§2s along
((C.Q;)J-. In fact, we have the following easy estimate (valid for any matrix M with spectrum
inside the unit disk and satisfying (E)).
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Proposition 2.2. For any € > 0 there exists a constant C¢ such that
|M™ — 7| < Cee™m

forallm >0, where y := min;cspec(m)\{13110g ||| > 0.

The parameter y measures the speed of convergence.

Remark. If all eigenvalues of M are semisimple then in Proposition 2.2 we have |M™ — || <
Ce ™Y for some constant C and all m > 0.

As a last preparation towards an understanding of our results we discuss the kinds of observ-
ables we consider. One interesting such class is 9ts C 9t which consists of observables of the
system S only. There are other observables of interest. We may think of the system S as being
fixed in space and of the chain as passing by S so that at the moment ¢, the (m(f) 4+ 1)th element £
is located near S, cf. (2.12). A detector placed in the vicinity of S can measure at this moment in
time observables of S and those of the (m(¢) + 1)th element in the chain, i.e., an “instantaneous
observable” of the form Ag ® U (1)+1(Bo), where As € Mg, By € Mg, and U, : Mg — M is
defined by

Ip(Ag) =1g... 1e ® As ®1g..., (2.20)

where the Ag on the right-hand side of (2.20) acts on the mth factor in the chain. An example
of such an observable is the energy flux (variation) of the system S. More generally we may be
interested in the expectation value of operators of the form

p r
[As; Ais Bil= As Q) Ai Q) Omiy+j+1(B)), 221
i=1  j=—t

where As € Mg, Ay,...,Ap, € Me, B_y,..., By, ..., B, € Mg and where t =m(t)t + s(t)
as in (2.12) and ¥ is given in (2.20). The parameters p > 1, £,r > 0 are not displayed in the
left-hand side in (2.21). (We always assume that p < m(t) — £ 4+ 1.) As and the A; represent
observables we measure on the small system and on the element with index i of the chain, the
By is the “instantaneous” observable, measured in the element m(¢) + 1 of the chain (the one
in contact with S at time ¢), while the B; with negative and positive index are the quantities
measured in the elements preceding and following the (m(¢) + 1)th.

2.2. Asymptotic state

Throughout the paper we assume that conditions (A) and (E) of the previous section are sat-
isfied.
We consider the large time limit of expectations

E(t) = w(agilAs; Ai; Bj]) (2.22)
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for observables [As; A;; B;] as in (2.21) and for normal states w on 9. Define the state w on
Ms by

w(As) = (25, Asf2s), (2.23)
where £25 is defined in (2.19).
Theorem 2.3. Let w be fixed and take A; = 1g,i =1, ..., p. Forany € > 0 there is a constant Ce
such that for all t >0
|E(t) — E£(t)| < Cee™ Y797, (2.24)

where y > 0 is given in Proposition 2.2, and where E_ is the t-periodic function

r

E+() = w4 (Pog " (As® By ®-- ® BO)P) [ [(B))a.. (2.25)
j=1

Here (Bj) o, = (¢, BjQ¢).

We define the RIAS to be the t-periodic state on s ®;:_ ¢ Mg given by
r r
As Q) Bj > wp(Pag " (As® B ®---® Bo)P) [ [ (B))ae- (2.26)
j=—t j=1

Using (2.24) and the uniqueness of the limit, one can see that the state wy does not depend on
the choice of the reference state $2g.

Remarks. (1) If B_y, ..., B_y_1 = 1¢ for some —¢' — 1 < —1, then one shows that

0)+(P<¥1%H([)(AS ®B_(®: - ®By)P) = w+(Pagf+S(t)(A5 ®B_y®- - ®By)P),

and in case Bj =1¢ for all j = —¢, ..., 0 formula (2.25) is understood with ozgﬂ(t) replaced

by af{(f).

(2) C¢ in Theorem 2.3 is uniform in t for T > 0 varying in compact sets, and it is uniform in

,
As €Ms, {Bj};—; C Mg ‘ lAsI [T 18;ll <const}.
j=1

(3) The convergence is determined by that of Proposition 2.2. If the ergodic assumption (E)
is not satisfied then the limit lim,,_, oo M" still exists, in a weaker sense. Namely, if there are
eigenvalues different from 1 on the circle, then the limit exists in the ergodic mean sense,

p Nl 1
— M" = ol —).
g =r+o(y)

n=0
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Further, if 1 is a degenerate eigenvalue of M then the limit exists but the projection 7 is not
one-dimensional. This reflects in Theorem 2.3 in the following way. If 1 is non-degenerate, but
there are other eigenvalues on the circle, then Theorem 2.3 holds with (2.24) replaced by

m(t)
; Y E(mt+s(0) - E*f(t) <

m=0

%. (2.27)

If, on the other hand, 1 is degenerate but there is no other eigenvalue on the circle, then one
can still prove that the expectation value E(7) has an asymptotic behaviour E (¢, ), which
is T-periodic, but which will a priori depend on the initial state @ (cf. (4.25) in the proof of
Theorem 2.3). Of course, if both 1 is degenerate and there are other eigenvalues on the circle,
then one gets convergence to Eo (¢, ) but in the ergodic mean.

Our next result incorporates the measurement of observables Ay, ..., A, € Mg for a chain
consisting of dispersive systems £. We measure dispersivity by the property of return to equi-
librium. & is said to have the latter property iff for any normal state wg on Mg we have the
relation

lim we(tg(Ag)) = (2¢. AcS2e) (2.28)

for any A¢ € M. Examples of such £ include reservoirs of ideal quantum gases. It is worthwile
to mention that € has the property of return to equilibrium if and only if e~¢ converges in the
weak sense to the orthogonal projection onto C£2¢, as t — oo.

Theorem 2.4. Suppose £ has the property of return to equilibrium. Then

Jim |E(t) — E+ ()] =0, (2.29)

where E (t) is the T-periodic function

P r
EL(t)=ws(Pag " (As® B_® - ® B)P) [ [(Ai)ee [[(Bidae-  (230)
i=1 j=1

Remark. The speed of convergence in (2.29) is determined by that of return to equilibrium,
(2.28), and by y, Proposition 2.2. The limit (2.29) is uniform in , for T varying in compact sets,
and it is uniform in balls of observables

V4 r
lAsI T THAil TT 1851l < const.
i=1 j=—t
2.3. Correlations and reconstruction of initial state

As Theorems 2.3 and 2.4 show, the limiting expectation values E (f) are independent of
the initial state (the state w4 is, cf. (2.23)). However, limiting correlations are not, and their
knowledge allows to reconstruct the initial state.
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Fix a normal initial state w of 9t and let A € M, Ag € Mg, By € Mg. We define the correla-
tion between A and the instantaneous observable As ® ¥,(1)+1(Bo) by

C(t; A, As, By) = a)(AaI’U(AS ® ﬁm(,)_H(Bo))). (2.31)
Theorem 2.5. For any € > 0 there is a constant C¢ such that for all t > 0
|C(t; A, As, Bo) — C1(t; A, As, Bo)| < Cee ' V7/T, (2.32)
where y is given in Proposition 2.2, and where C. is the t-periodic limiting correlation function
Ci(t; A, As, By) = (A (Pagy (As ® By)P) (2.33)
with w4 defined in (2.19).

Remark. Relation (2.33) allows us to reconstruct the initial state w, knowing the asymptotic state
w4+ and the asymptotic correlation function Cy .

2.4. Energy, entropy and their relation

It may not be meaningful to speak about the total energy of the system, because it may have
to be considered as being infinite, e.g. if the elements £ of the chain are infinitely extended
quantum systems with non-vanishing energy density. However, we can define the time variation
of the total energy of the system and link it to its entropy variation, giving us an average 2nd law
of thermodynamics for RIAS.

2.4.1. Energy

Recall that Zm+1, m > 0, is the generator of the total dynamics in the time interval t = mt +
s € [mT, (m + 1)7), during which the (i + 1)th element of the chain interacts with S, cf. (2.11).
Given any integer m > 0 and any 0 < s < 7 it is easy to formally verify the relation

ot (Lows1) = aRT (Lm1) =0, (2.34)

This suggests that the formal quantity oefu(zmﬂ) is constant for ¢ in any interval [mt, (m + 1)7).
Another short calculation yields that this quantity undergoes a jump j(k) as time passes the
moment kt, k > 1: for (k — 1)t <11 <kt <t) < (k+ 1)T we have

Jk) == o (Lir) — oy (La) = o] (Vieys — Vi), (2.35)
where we set
Vi = [1ong @ % I(V) (2.36)

(see (2.20)). We interpret j (k) as the change in total energy as time passes the moment k7.
Theorem 2.3 tells us that for any normal state w on 9T and for any € > 0, there is a constant
C. such that

lo(j (k) — 0t (j)| < Cee™ 79, (2.37)
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where
T
j+=PVP — Paj (V)P = —i/ Pay([Ls+ Lg, V1) Pds. (2.38)
0

Relation (2.37) and the fact that the energy is piecewise constant shows that w4 (j4) is the change
of energy in any interval of length 7, in the large time limit. We thus call

1 .
dE; = —O+ (J+) (2.39)

the asymptotic energy production. The asymptotic energy production does not depend on the
initial state of the system.

Remark. It is not hard to see that the expectation of the energy jump is constant in the state
w4+ ® we, where we is the vector state on i determined by £2¢, (2.2):

wy ®@we(j()) =wp(js), Vk>1. (2.40)

We introduce the variation of the total energy, A E (t), between the instants t = m(¢)t + s()
and ¢t = 0. It is the sum of the energy jumps,

m(t)

AE@)y =) jk) fort>r, (2.41)
k=1

and AE(t) =0if 0 <t < 7. Estimate (2.37) shows that for any normal state w on 91 there is a
constant C such that

—dE4| <

bLAE(” ) (2.42)

C
t

for all t > 0. The energy grows asymptotically linearly in time.

2.4.2. Entropy, average 2nd law of thermodynamics

Let w and wg be two normal states on 9. The relative entropy of w with respect to wy is
denoted by Ent(w|wp), where our definition of relative entropy differs from that one given in [4]
by a sign, so that in our case, Ent(w|wq) > 0.

For a thermodynamic interpretation of the entropy and its relation to the energy variation, we
assume in this section that 25 is a (8s, ré)-KMS state on Mg, and that 2¢ is a (B¢, ré)-KMS
state on Mg, where Bs, Be are inverse temperatures. Let wg be the state on 2 determined by
the vector 2s ® £2¢ (cf. before (2.1), and (2.2)).

We are interested in the change of relative entropy of the repeated interaction system as time
evolves.

Proposition 2.6. Let w be any normal state on 9. Then Ent(w o afu|a)o) is a continuous, piece-
wise differentiable function of t > 0. Moreover, we have

Ent(w o agylwp) — Ent(w|wy) = w(Be AE(1) — agy (X (1)) + X (0)), (2.43)

© 0O N O O A~ WO N =



© 0 N O 0o~ O N =

JID:YJFAN AID:4743 /FLA [mi+; v 1.53; Prn:3/03/2006; 10:42] P.15(1-35)

L. Bruneau et al. / Journal of Functional Analysis eee (eeee) eee—see 15

where AE(t) is the variation of the total energy between the momentst = 0and t = m(t)t +s(t),
see (2.41), and where

X(t) =BeVmwy+1+ (Be — Bs)Ls (2.44)
with Vi given by (2.36).

The proof of (2.43) is based on the entropy production formula [6]. We give it in Section 4.4.
It is not hard to verify that for ¢ € (mt, (m + 1)7) we have

d .
3 Ent(@ o aylen) = —o(ogi(ilBsLs + BeLe my+15 V1)) (2.45)

and that left and right derivatives of Ent(w o afflao) exist as t — mt, but they do not coincide.

If Ent(w|wg) < oo then all terms in (2.43) are bounded uniformly in 7, except possibly Ent(w o
oe{u |wg) and w (Bs AE(t)). Hence (2.39) and (2.42) show that for any normal state @ on 9t there
is a constant C such that

Ent(w o ablwg)  Be . C
— = - e, (| <= (2.46)
t T t
for all t > 0. The entropy grows linearly in time, for large times.
The relative entropy is non-negative, so (2.46) shows that
w4 (j+) =0, (2.47)

We show in Section 3 that w (j4) is strictly positive for concrete systems. It follows from (2.46)
also that

sup|Ent(w o aglwn)| <00 <=  wi(jy)=0. (2.48)
t>0

Since w4 (j4+) is independent of w it follows that for a given interaction (V, t) the relative entropy
either diverges for all initial states w, as t — 00, or it stays bounded for all initial states w. In
particular, if w4 (jy) > O then there does not exist any normal state w on 9 which is invariant
under ofy; (i.e., such that o agy = w, for all t > 0).

Proposition 2.7. We have

lim [Ent(w o ok *wo) — Ent(w o afylwo)] = Bew+(jt). (2.49)

—0o0

The change of entropy during an interval of duration 7, for + — oo, is thus given by
Be w4 (j+) = 0. We call

dsy = 'B?gw+(j+) (2.50)

the (average) asymptotic entropy production. The quantity dS represents the increase in entropy
per unit time, in the limit of large times. It does not depend on the initial state of the system.
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Remark. One sees easily that the expectation of dS; is constant in the state w; @ w¢ (see also
(2.40)).

Relations (2.50) and (2.39) lead us to the average 2nd law of thermodynamics,
dEL =TegdSy, Te=1/B¢. (2.51)
This law does not depend on the initial state of the system.
3. Examples

3.1. Spin—fermion system with quadratic interaction

As our main example, we consider the case where the small system S is a 2-level system and
the elements of the chain consist of free Fermi reservoirs at positive temperature S~ !. Let us first
describe precisely the model (see also [5] and references therein).

The von Neumann algebra of observables for the small system is

Ms=M(C)®1={A®1|Aec M)} (3.1
acting on the Hilbert space
Hs=C?® C>. (3.2)

Let oy, oy, o, be the usual Pauli matrices

0 1 0 i 10
(Vo) em(G0) ==l h)

The dynamics of the small system is then given by
TL(A®1) =€ A @ 1. (3.3)

For convenience we chose the reference state wgs to be the tracial state, i.e. ws(A Q1) = 1 Tr(A).
Note that it is a (rfs, 0)-KMS state. Its representative vector is

1 1
9$=ﬁ¢1®¢1+ﬁ%®¢2, (3.4

where (Y1, ¥2) is the canonical basis of CZ. For shortness, we will denote by 1; =Y ®y; the
corresponding basis of Hs. The standard Liouvillean then writes

Ls=0;31-1Q®o0,, 3.5

and its spectrum is spec(Ls) = {—2,0,2} where 0 has multiplicity 2, and —2, 2 are non-
degenerate. Finally, the modular conjugation and modular operator associated to (Mg, £25) are

Js@RY) =¥ @, As=1Q®1, (3.6)

and where ~ denotes the usual complex conjugation on C2.
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We then describe an element of the chain, i.e. a free Fermi gas at inverse temperature §. Let
b be the Hilbert space of one single fermion and / its energy operator. The operators a( f) and
a*(f) denote the corresponding annihilation and creation operators acting on the fermionic Fock
space I_(h) and they satisfy the canonical anti-commutation relations (CAR). As a consequence
of the CAR, the operators a(f) and a*(f) are bounded and satisfy lla®( DI =IfIl where a*
stands either for a or for a*. The algebra of observables of a free Fermi gas is the C*-algebra of
operators 2 generated by {a”(f)| f € h}. The dynamics is then given by

t(a*(f)) =a* (e f). (3.7)

It is well known (see e.g. [4,10]) that for any 8 > 0, there is a unique (z¢, 8)-KMS state wg on A
which is determined by the two point function wg(a*(f)a(f)) = (£, (1 + €)= £). Finally, let
£2¢ be the Fock vacuum and N the number operator.

We now fix a complex conjugation (anti-unitary involution) f — f on b which commutes
with the energy operator A. It naturally extends to a complex conjugation on the Fock space
I"_(h) and we denote it by the same symbol, i.e. & — .

The GNS representation of the algebra 2 associated to the KMS-state wg is the triple
(HF, g, .QF) [1] where

Hp=T1_(H) 1), 0 = $2f @ 24, (3.8)
and
eﬂh/Z N . 1 _
ﬂﬁ(a(f))za(ﬁf>®]l+(—1) Qa (Wf> =:ag(f),
Bh/2 1 _
”ﬂ(a*(f)) = Cﬁ(ﬁf) @1+ (DY ®a(ﬁf> =: a;(fl (3.9)

The von Neumann algebra of observables for an element of the chain will then be the envelop-
ing von Neumann algebra

Me =mp(A)”, (3.10)
acting on the Hilbert space
He = Hr. (3.11)
The dynamics on mg(2() is given by
12 (mp(A)) = mp (i (A)) (3.12)

and extends to Mg in a unique way. The representative vector of the equilibrium state is
¢ = 2, (3.13)
and the standard Liouvillean then writes

Le=dIr(h) @1 —1QdI(h). (3.14)
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Finally the modular conjugation and the modular operator associated to (Mg, 2¢) are
Je(@@W)=(—DHNN-D2g g (—H)NWN-D/2¢ Ag =e Ple, (3.15)

We finally specify the interaction between the small system and the elements of the chain, i.e.
the operator V. Let g € b be a form factor, we set

V=0, Q12 ® az(g)ag(g) €Ms @ Me. (3.16)

This is the simplest non-trivial interaction for which the number of particles is conserved.
We moreover assume that

(SF1) ePh/2g ep.

This ensures that assumption (A) is satisfied. Indeed, using (3.6), (3.15), (3.16), we get

1 e—Bh/2
—g ®1+(—1)N®a<7§)>
V1+ebh ) V1+efh

eBh N ePh/2
() erevec(Gam))) oo

The Liouville operator which generates the interacting dynamics is then the selfadjoint operator

AVPVAT2 =6, 012 ® [(a*(

Ly:=Ls+Lg+AV, (3.18)
while the C-Liouville operator is
Kii=Ls+Lg+Ar(V—JAPVATV2]) =Ko+ AW, (3.19)

and where X € R is a coupling constant.
For simplicity reasons we will moreover assume that

(SF2) h = L>(R*, g) where g is some auxiliary Hilbert space and the operator / is the multipli-
cation operator by r € R*.

Finally, let gg(r) := (1 + e P")1/2¢(r). Note also that the system & has the property of return
to equilibrium.
Our first result is the following theorem.

Theorem 3.1. Suppose assumptions (SF1), (SF2) are satisfied. Then for any T ¢ % + N, there
exists Ag > 0 such that for all 0 < |A| < Ag, the operator My = Pe™8+ P satisfies the ergodic
assumption (E). In particular the spin—fermion system with quadratic interaction satisfies Theo-
rem 2.3, with

2
y =1L T%) (0“2+ )52, 0(»?),
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Theorem 2.4, and, moreover, the asymptotic state w ) is given by

w4 (Ag) = (o111 + a2, As(P11 + ¥))

o)+ o

2 0] — 02

+ e P 2] S+ 921 AsWn + 92+ 0(7). (3.20)

D2(c) + a2

where for j =1, 2,

2 —
@ji= // drydryeP"s ||gﬁ(r1)Hzg||gﬁ(r2)HzgSin&(#) >0, (320

sinc(x) := Si%, and all the integrals run over R,
Remark. In the limit of small coupling the state w4 ; on Mg = M>(C) is given by the density

matrix

P+ = p1 Py, + p2Py,, (3.22)

where p; = % and Py is the orthogonal projection onto Cyr. By varying the coupling func-
tions g(r) we can realize any values of pj » within the interval [0, 1]. Similar remarks apply to
the other systems discussed below, see Egs. (3.24), (3.38), but also the remark after Theorem 3.4.

The unperturbed operator My has eigenvalues 1 (with multiplicity 2), " and e 2*
(see (3.5)). The assumption on the interaction time t ensures that these eigenvalues do not
coincide and makes the computation in perturbation theory as simple as possible. However, it
can probably be omitted.

One can also see that the asymptotic expectation E_ (¢) (see (2.25)) has a non-trivial period-
icity (i.e. it is not constant) at the order A.

We now turn to the question of entropy production for this simple model. We will prove that

it is strictly positive, at least for small coupling constant. More precisely, we have

Theorem 3.2. Suppose assumptions (SF1), (SF2) are satisfied. Then for any T ¢ % + N, there
exists A1 > 0 such that, for all 0 < |\| < Ay, the system has strictly positive asymptotic entropy
production.

3.2. Spin—fermion system with linear interaction

As a second example, we consider the same spin—fermion system at inverse temperature S.
The only change concerns the interaction term. Let g € ) be a form factor, we set

Vi=o, @1 ® (ap(e) +a}(2)). (3.23)

Once again, we assume that assumption (SF1) holds which ensures that A2y A—12 e om,
Indeed,
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1 efh
AVVAT 2 =6, @12 ® |:a*<7g> Q1 —i—a(ig) ®1
e V14 ePh 1+ ePh
+-DVe® a*<£§> +-DVe® a(ﬂgﬂ-

A1+ ebh /14 ebh
We then have the same kind of result as for the case of quadratic interaction. Namely

Theorem 3.3. Suppose assumptions (SF1), (SF2) are satisfied. Then for any T ¢ % + N, there
exists Ag > 0 such that for all 0 < |L| < Ag, the operator My, = Pe™8+ P satisfies the ergodic
assumption (E). In particular the spin—fermion system with linear interaction satisfies Theo-

2
rem 2.3, with y = WAZ + O(\3), Theorem 2.4 and the asymptotic state w4 IS given
by

1
w1 (As) = P (o111 + 0¥, As(Wi1 + ¥2)) + O (37), (3.24)

o2

where

o1 ZZ/dr ”gﬂ(”)”§<€_ﬁrsinc2<—r(r2_2)> +sinc2<—r(r;_2)>>,
o2 = /dr ”gﬂ(i’)”3<€_ﬂr sincz<4r(r;_2)> +sincz<7r(r2_2)>>.

and all the integrals run over R*. Moreover, the system has strictly positive asymptotic entropy
production.

3.3. Spin—spin model

As our next example we consider a model in which the small system as well as the elements of
the chain consist of a 2-level system. Such kind of systems (or more generally a d-level system
interacting with a chain of n-level systems, a situation we could equally well treat here) have
been considered previously in [2].

The von Neumann algebra of observables for the small system and for the elements of the
chain is

Ms=Me=M(C)®1={A®1| A e M)} (3.25)

acting on the Hilbert space
Hs=Heg=C*®C> (3.26)
Let Es and Eg be non negative real numbers. They will play the role of the energy of the
“excited” state of the small system and of the elements of the chain, respectively. The dynamics

of the small system is then given by

tL(A®1) =e"s Ae7s @ 1, (3.27)
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and the one of an element of the chain by
ThH(A®1L) =e" A @1, (3.28)

where hs = (§ £ ) and he = (§ £ ).

Once again, for convenience, we chose the reference state ws to be the tracial state, i.e.
ws(A®1) = 1 Tr(A) (the results of course do not depend on this choice). Its representative
vector is (Section 3.1)

1 1
s =—=Y11 + —=v20. (3.29)
V2 ﬁw
The standard Liouvillean writes
Ls=hs®1—-1Q®hg, (3.30)

and the modular conjugation and modular operator associated to (Mg, §25) are
Is(@@V) =V ¢, As=1®1. (3.31)
In order to avoid confusions between the small system and an element of the chain we will

denote by ¢;; = ¢; ® ¢; instead of ;; the basis of Hg. The reference state wg will be the
(tg, B)-KMS state. Its representative vector writes

1
Qs = —— (P11 + e PE29). (3.32)
VT ?)

The standard Liouville operator is
Le=hg®1—-1Qhg, (3.33)
and the modular conjugation and modular operator associated to (Mg, £2¢) are
eV =V®p  Ag=elle. (3.34)
Note that here the system £ does not have the property of return to equilibrium.
We now describe the interaction. Let us denote by a and a* the annihilation and creation

operators associated to the vectors ¢ (ground state) and ¢, (excited state), i.e. agp; =0, agr =
é1,a*p1 = ¢2, a*¢o = 0. Finally let

a b
I=<c d)EMz((C).

The interaction is then given by

V=I®1®ada*"1+I"®1Qa®1. (3.35)
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The Liouville operator which generates the interacting dynamics is then the selfadjoint operator
Ly:=Ls+Lg+\V, (3.36)

while the C-Liouville operator is
Ky:=Ls+Leg+rV—JAPVATV2]) =Ko+ AW, (3.37)

where X is a coupling constant.
We finally consider the following assumptions.

(SS1) b#0and t(Eg — Es) ¢ 27 Z.
(8S2) c#A0and t(Eg + Eg) ¢ 27 Z.

If either (SS1) or (SS2) is satisfied, then the ergodic assumption (E) holds.

Theorem 3.4. Suppose that t E¢ ¢ nZ and that either assumption (SS1) or (SS2) is satisfied.
Then, there exists Ag > 0 such that for all 0 < |X| < Ao, the operator My, := Pe\"™X+ P satisfies
the ergodic assumption (E). In particular the spin—spin system satisfy Theorem 2.3, with y =
Yor?2 + O (M%), and the asymptotic state w ;, is given by

1
01 (A8) = —— (e1¥r11 +a2yan, As(rin +¥2)) + 0 (2?), (3.38)

o2

where

Es—E Ec+E
o] = |b|zsinc2(w) +e_ﬂE5|c|zsin02(w> >0,

Es —E E E
ay = e_ﬂEé‘ |b|2 SinC2(¥) + |C|2 SiHCZ(W) >0,

2 2 2
T (a1 +a2) t7(0) +a2) 7 . ,(TEg 2 ) - -
Y0 .—m1n< 4o FEs ,2(1+e_ﬂE8)+?smc > (lal* + |d|* —ad — ad) ).

If, moreover, both assumptions (SS1) and (SS2) are satisfied, then the system has strictly positive
asymptotic entropy production.

Remark. By varying b and ¢ one can produce a state p, as in (3.22) with the property e #£¢ <
p1/p2 < etPEe . By lowering sufficiently the temperature T = 1/8 of the elements S of the
chain one can prepare any target state of S with arbitrary precision.

Once again, we assume that t E¢ ¢ w7 in order to make the eigenvalues of M( not coincide
and this can probably be weakened. On the other hand, assumptions (SS1) and (SS2) are much
deeper. Their meaning is that there is an effective coupling between the ground state and the
excited state of the small system (b or ¢ non-zero) as well as a non-resonant phenomenon between
the energies of the small system and the elements of the chain (t(E¢ — Eg) or t(Eg + Eg) not
in 27 Z). Asking that either (SS1) or (SS2) is satisfied is actually equivalent to the condition
o] + a2 #O0.
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4. Proofs
4.1. Proofs of Theorems 2.3, 2.4

We give the full proof of Theorem 2.4, the proof of Theorem 2.3 is a special case of the former.

It is enough to show (2.29), (2.30) for vector states w(-) = (¥, - ), ¥ € H, || || = 1. Further,
since every ¥ € ‘H is approximated in the norm of H by finite linear combinations of vectors of
the form g ®m>1 Y, Wwhere s € Hs, ¥, = 2¢ if m > N, for some N < oo, it suffices to
prove (2.29), (2.30) for vector states determined by vectors of the form

ws®wm ) 2: eH. 4.1)

m>N

where ||[¥s] = |[¥mll =1, 1 <m < N, for arbitrary N < oo. Finally, since the vectors £2s, 2¢
are cyclic for the commutants ', M., any vector of the form (4.1) is approximated by a

Vv =B 2s® 2, 4.2)
for some
B_BS®B Q) 1c e’ 4.3)
m>N

with B € M, B,, € M. Itis therefore sufficient to show (2.29), (2.30) for vectors of the form
4.2), 4.3).

Let As € Mg, Ar,...,Ap € Mg and B_y,..., By, ..., B, € Mg be fixed observables
(¢, r = 0). We examine the expectation value

p r
E():= <1ﬂ, aRI <A8®Ai (0 19m(t)+j+1(Bj)>¢>, (4.4)

i=1  j=—t

where ¥ is given in by (4.2), m(¢) is determined by (2.12), and where the A; act on the first p
factors of Hc. It is clear that the trivial factors 1¢ are omitted in (4.4). The choice of indices in
(4.4) is such that at time ¢ the observable By is measured in the element £ of the chain which
is interacting with S (i.e. the (m(z) + 1)th element of the chain). The following decomposition
serves to isolate the dynamics of the elements £ which do not interact at a given time, see also
(2.11).

e—lj‘L,,,+]e—1TLm . —1TL1 _ U e 1YL,,1+1 itLy, .. ‘e—”Ll Ur-r’L_’ (45)

where

m —6Xp|: Z (m_])'c"f's Le ]i|a (4.6)
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m+1
Ul = exp|:—i > G —Drle,—i(mr+s) Y Lg,j}. 4.7)
j=2 j=m+2

We obtain from (2.13), (2.14) and (4.5)

E@t) = <1ﬁ, (U:;)*Gitl'l ...eiTlmeislmt

)4 -1 r
—i) T+ —j=1)T+:
x As @ 7e" AN Q) Bt (g TV (B)) Q) P a1 (B))
i=1 j=—¢ j=0

x e kmite=ithn - e=itligyt > (4.8)

where we write m, s for m(t), s(t). The operator (U;)*...U,} in the right-hand side of (4.8)
belongs to M1. Hence we can commute the B’ in (4.2) with this operator to obtain

E@) = <.Q, (B/)*B’(U,;ﬁ)*ei“1 ..eitbmelslmt

p —1
% As@ T () ) P 1 (2 (B))) @ D (Bo)

i=1 j=—t
) ) ) r
x e Wlmire=itlm - o=ivli Q> H(Bj)gg, 4.9)
j=1
where we have set
2=02s5® 2, (4.10)

and we write (O), = (x, O x) for an operator O and a vector x. The operator U, disappears
because it leaves §2 invariant, cf. (2.9). We are able to factorize the averages (B;) o, for j > 1,
because B’ and all propagators in (4.8) act trivially on factors of H with index > m + 2 (note
also that N < m since we have in mind the limit m — 00).

Since (B’)*B’ acts trivially on factors in H¢ with index > N + 1 we may replace (U,))* =
ur ))* in (4.9) by

m(t
N
Uy =exp[iZ(j — 1)rLg,j:|, 4.11)

j=1

which is a unitary not depending on t. Without changing the value of (4.9) we can replace in that
equation successively L1 by K, then L, by K3, up to replacing L, by K. Then
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E(t) — .Q, (B/)*B/UNCITKI B .eHKPelrL”“ o elth elsL,,,H

-1
—ji—1
x As Q) Imsj+1(re 7" (B))) ® Ous1 (Bo)
j=—t

P r
x e 8Lmtig=itlm  o=itLpt (® gllm=Dr+slLle Ai)Q l_[(Bj>.ng (4.12)
i=1 j=1

where we have used that £2 is in the kernel of the K ;, and where we have commuted the product
of the freely evolved A ’s to the right through the propagators which act on different factors.
Because the system & has the property of return to equilibrium the propagator

ei[(m(f)—i)r+x(t)]Lg

converges to the projection Po, = [§2¢)(£2¢]|, as t — 00, in the weak sense on Hg . Define the
orthogonal projection Qﬁ; =1-Qp,onH, where Q, = ®§’:] U (Pgog). We want to show that

lim <Q (BY*B'Uye'™81 .. eTKpeitlpt1 | itlmeislmi
—> o0

-1
i1 :
X Ag ® 7-9m+j+1(7:5(‘ J=Drs (B])) &® ﬁm+](BO)
j=—1

p
xe*“wﬂe*”w.“e*“wHQj(@@aﬂm4”+”“vn>g>:0. (4.13)

i=1

To do so we split the Hilbert space as H = H ® Ha, where Hi = Hs &),,> 11 He, and Hy =

le He, and set

-1

. Y . —i—Dt+
Yp = elthe et gishas (As Q) i (27T (B)) ®z9m+1<Bo>>
j=—t

x e Whmtig=itlm  o=iTLpi |:.Qg ® 95] e Hy,
m2zp+1

4 p
I/fén _ Q;ly (®e1[(m—z)r+s]L5Ai) ® Q¢ € Ha.

i=1 i=1

Qﬁ; is a sum of terms, each one containing the operator P_é-g = 1g — Pg, acting on at least one of

the p factors in H,. Consequently we have 1//5" ®_ 0, weakly in Hj, as t — oo. Since I//;n(t) is

uniformly bounded in ¢ it follows that w;n(t) QY5 @ converges weakly to zero in H, as t — oo.
This proves relation (4.13).

-
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Thus, in the limit # — oo, the only contribution to (4.12) comes from the part where all the
free propagators el ~)T+sILe are replaced by Py - This shows that

lim
— 00

E(l‘) _ <Q, (B/)*B/UNeHKl . .CITKPCITL”'H 4 .el‘L’LmelSLm_H

X AS ® ﬁm-ﬁ-]-‘rl 'L'év J I)T—H(Bj)) ®ﬁm+l(BO)
j=—t

r

14
—isLyy41 o—iTL —itL )y .
X € m+le m.o.e P+ Bj) o,

i=1 j=1

=0. (4.14)

We may now, as we did above, turn the operators L ; in (4.14) into K ;’s, also for the remaining
indices j=p+1,...,m+ 1, to arrive at

lim
11— 00

E(t) — <.Q (B)*B'Uye'™81 .. eTKN pyelthnet | olTKnmgisKnii

r

-1 ' »
X As ® ﬂm+j+1(‘ré‘_‘/_l)f+‘v(3j)) ® l9m+1(Bo).Q>l_[ 1_[ i) e

j=—t i=1 j=1

=0, (4.15)

where we introduce the projection Py = ), > y1 ¥m(Pg;) (that projection comes from the left

factor of the inner product and slips through (B’ )*B'Uy and through the first N propagators).
We have

Omt1(Pog)e 1 (As © 0,11(Bo)) 2 = Do(s)$2, (4.16)
where Dq(s) is a linear operator acting non-trivially only on Hs. Dy(s) depends on Ag, By,
the interaction V and s = s(¢), but it is independent of m = m(t). In the same way we define
Di(s) € B(Hs) by

O (Pog)e ™ m 9, (5 (B_1)) Do(s)$2 = D1 (5) Do(5)$2, 4.17)
and then D> (s), ..., D¢(s) € B(Hs). Hence the inner product in (4.15) can be written as

(2, (B B'Uye™ 1 . &KV pyel™®net &Kt p(5)02), (4.18)

where D(s) = Dy(s)...Do(s) € B(Hg). Since §£2 = P§2, where P is the projection onto £2¢,
cf. (1.8), we have

Pyel TN+ el tKn—t p(5)Q = pelTEN+1 | eiTKn—t P D (5)82. (4.19)

The reduced product of the propagators on the right-hand side is the product of the reduced
propagators, as we show in the following proposition.
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Proposition 4.1. For any q > 1, let t1, ..., t; €R, and let my, ..., my > 1 be distinct integers.
Then we have

PeltKn  ellaKng p — peltKm p  pellaKng p. (4.20)

Proof. If Q is a projection we set Q- =1 — Q. We have PLela®ng p ¢ Ran ﬁmq(Pg-) since
on all factors of H¢ with label m # m,, the projection ¥, (Pg) coming from P commutes with
ella®mg Tt follows that
peKm  pLelakng p = peliKm 1y, (PF)PtelFmp =0,
because ¥, » (PgL) can be commuted to the left to hit P. Thus we have
PeiltKmy | oilaKng p — peitiKmy - olla=1Kmg_y poitgKig p

and we can repeat the argument. This proves the proposition. O

According to (4.20) the right-hand side of (4.19) equals M m—t=N D)(5)$2, where M = PM P

is the operator introduced in (2.18). We then obtain the following result from (4.19), (4.18) and
(4.15):

lim |E(t) — (2, (B'Y* B Uyne™ 1 .. KN ppymO==Npp(5(r)) 2)
—00

r

(Aae [ [(Bi) e

1 j=1

x —0. 421

e

L

In order to further simplify the scalar product in (4.21) we use the ergodicity assumption (E). We
have MMmO—t=N _ 7 — |225)($25|, as t — 00, in the topology of B(Hs) (cf. (2.19)), and since
D(s(t)) is uniformly bounded in ¢ we obtain

P r
Jlim E(t) — (2, (B)*B'Q)(2%, PD(s(t)) PR2s H ]_[ Nes|=0. (4.22)
i=l1 j=1

Remember that ¥ is approximated by B’$2, i.e., given an arbitrary ¢ > O we choose B’ such that
Y — B'$2|| < €. Thus

(2,(BYB'2)=1B'21*= (v + 0@©)’ =1+ 0), (4.23)

which we can use in (4.22) to arrive at

P r
Jlim E@t) — (25 PD(s(t) PRs)[ [(Anee [ [(Bj)ae | =0. (4.24)

i=1
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Note that if 1 is a degenerate eigenvalue of M. Then (4.22) becomes

P r
Jlim E@t)— (2. (BY*B'mPD(s(t)) P2s) [ [(Ai)ee [ [ (Bj) e | =0 (4.25)
i=1 j=1

Thus, E(t) has a t-periodic asymptotic behaviour (s(¢) is periodic) but which depends a priori
on B’ and thus on the initial state w: the simplification due to (4.23) does not hold anymore.
Finally by the definition of D(s), cf. (4.18), (4.17), (4.14) we get

(225, PD(s(1)) PR2s)

= (2%, Pe™K1 TRl K [Ag @t VTN (B_) ® - @ tH(B_1) ® Bo] PRs). (4.26)

Using the invariance P2g = e 5Kerie=17Ke | e=17Ki p Q4 and passing from K’s to L’s we
obtain
(225, PD(s()) PR2s)
= (2%, PeThieltheellen[ag @ o TV (BL) © - ® T(B1) ® By
X efiSLg+lefitL( . efi‘[Ll PQS)
=(Q%, Pl Tl (U ) [As® By ® -+ © By
X U_e_i”‘“‘e_if[‘e ...eith PQs)

= (2%, Pagi " (As® B¢ ® --- ® By) PR2s). (4.27)

We conclude the proof of (2.29), (2.30) and hence the proof of Theorem 2.4 by plugging (4.27)
into (4.24).

4.2. Proof of Theorem 2.5

The proof is a simple modification of the proof of Theorem 2.4. We indicate the main steps.
Proceeding as in Section 4.1 we see that (compare with (4.12))

C(t; A, As, Bo) = (2, (B)*B'AUNe ™81 . el KmelsKni1 A g @ 9,1 1(Bo)2),  (4.28)
where we may assume that A acts trivially on factors of H with index > N. As in Section 4.1

we replace the product of the propagators in (4.28) by e!" X1 . el"&~ pym=N—1 Taking the limit
m = m(t) — oo then yields

lim |C(1; A, As, Bo) — (2, (B B'AQ)w, (Pagy (As ® Bo)P)| =0 (4.29)
— 00
with a speed of convergence dictated by Proposition 2.2. To complete the proof of Theorem 2.5

we notice that (£2, (B")*B’'AR2) = (A)pro = w(A) + O(¢), for arbitrary ¢ > 0 (cf. the argument
before (4.23)).
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4.3. Proof of Proposition 2.1

Let K,,, L,, be the operators on H that act trivially on all factors except on Hg times the
mth Hg, where they act as K, L. Given any t € R, A, B € Mg (C IN) we have

(B2s ® 2¢.e't .. et aeTn e Qs @ 20),,
=(BRs® 2¢.""1 . "*mAQs ® 2¢),, = (BS2s. (PeifKP)’”Aszg)Hs, (4.30)

where we use that K and L implement the same dynamics on 2% and (2.16) in the first step, and
Proposition 4.1 in the second step. Since BS2g is dense in Hg it follows from (4.30) that

|(Pe"X P)" A2s|| < IIAIl. 4.31)
So far we have not used that dimHs < oo. In the finite-dimensional case, 9525 is not only
dense in Hg, but for any ¢ € Hg there exists an A € Mg such that ¢ = A2g. Thus (4.31) and

the uniform boundedness principle give that

sup || (Pei’KP)mH < 0. (4.32)
teR,m>0

The facts that the spectrum of Pe’X P lies in the unit disk in C, and that all eigenvalues on
the unit circle must be semisimple follow from the uniform boundedness of ||(Pe'X P)™ || in m.
They can be shown using an easy Jordan canonical form argument.

4.4. Proof of Proposition 2.6

Given any normal state w of 9T and any unitary U on H we have the following relation [6]
(our definition of entropy differs from the one in [6] by a sign)

Ent(w(U* - U)|wg) — Ent(w|wo)

= w<U*[ﬂg Y Lex+t ﬂsLs}U —BeY Lex— ﬂsL5>- (4.33)
k k

In case U is a dynamics of the system, (4.33) is called the entropy production formula. We take
U = Ugri(¢). The argument of w in (4.33) can be written as

Be {afu(z Lej+ Ls) > Lex— LS} — (Be — Bs) (ag(Ls) — Ls).
k k
so it suffices to prove (2.43) for Bs = B¢ = B. We want to show that

oq’u(Z Lex+ Ls) Y Lex—Ls=AE®) —afy(Vmop) + V1. (434)
k k
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It is clear that the sums in the left-hand side of (4.34) extend only from k =1to k =m + 1.
We examine the difference of the first two terms on the left-hand side, for kK = m + 1. With
t =mt + s, we obtain for this difference the expression

ap(Lemr1 + Ls + V1) — oy (Vimt1) — Le msi
=gy (Lgm1 + Ls + V1) — agp(Vins1) — Le my
= gy (L) + gl (Vint1) = oy (Vins1)
= o[ (Ls + Vi) + ogl Vins1 = Vi) — ogg(Vin1)
= Ry (Ls 4 Vi) 4 j(m) — oy (Vint 1), (4.35)
where we use in the second step oy (Lg m41) = Lg m+1, and in the last step we use definition
(2.35). We now add to (4.35) the expression ag(Le ) — Lem = R (Lem) — Le i (i.e. the

term with k = m in the sums of the left-hand side of (4.34)) and repeat the manipulations leading
to (4.35) to obtain for this sum the expression

(m I)T(LS+Vm D+ jm=1)+ jm) — agy(Vims1).

It is now clear how to continue this process until all terms with k = 1,...,m 4+ 1 in the sums of
the left-hand side of (4.34) are taken care of. We obtain

m(t)
left-hand side of (4.34) = ¥ j (k) + Vi =y (Vin(ry+1)- (4.36)

k=1

Definition (2.41) yields the result (2.43).
To see that Ent(w o al’{1|w0) is continuous in ¢ > 0 we show that

Ent(e 0 ol |wp) — Ent(w o ot ™7 |ay) (4.37)
converges to zero, forall m > 1, as s | 0 and s’ 1 7. Expression (2.43) yields
(4.37) = w(Bg[AE(mT +5) — AE((m — DT +5')]
— R (Be Vi1 + ABLS) + iy (Be Vi + ABLs)),  (4.38)
where A = B¢ — Bs. The first argument of w in (4.38) equals B¢ j(m), see (2.41). Next,
AT V) — et ™ (V) — @ (Vinst = Vi), 439)
as s | 0, s 1 7. But the right-hand side of (4.39) is just j(m), see (2.35). This will compen-

sate the contribution of the first argument in w of (4.38) in the limit. Finally, al’;’ITH(LS) —
al({?_l)ﬂ“s (Ls) tends to zero, as s |, 0, s’ 1 . Consequently, (4.37) vanishes in the limit.
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4.5. Proof of Proposition 2.7

By (2.43) and (2.41), the change of entropy within an interval of duration 7 is given by

Ent(w o apt? lwo) — Ent(w o argylap) (4.40)
=Bew(jm+ 1) — alt " (Vins2) + ki (V1)) (4.41)
— (Be — Bs)w(apt T (Ls) — agy(Ls)). (4.42)

where j (k) is given in (2.35), and m = m(t). Taking into account (2.35), (2.38) and Theorem 2.3
we see that the limit + — oo of (4.41) is B¢ w4 (j+). We claim that (4.42) vanishes as t — oo.
This can be seen in the following way. An application of Theorem 2.4 shows that

tl_l)rglo a)(altgr (Lg) — Olltu(LS)) = / a)+(Palsu(i[V, LS])P) ds, (4.43)
0

where we use that [V, Lg] € Mg ® Mg, which follows from the fact that e’Ls Ve iLs ¢ Ms ®
Mg for all + € R. Therefore

Ent(w o g} * |wp) — Ent(w o agylao)

—qum—%—%Jm@%mwuwws (4.44)
0

as t — 00. On the other hand, (2.46) shows that

;[Ent(w oaht” lwo) — Ent(w o argylawp) | — ﬁr—gw+ (i) (4.45)

in the limit # — oo. Then the following general fact proves that (4.43) must be equal to zero:

If a locally bounded function f on R has the property f(r + t) — f(¢t) — a, as t — o0, for
some a € R and some 7 > 0, then f(¢)/t — a/t,ast — oo.

This concludes the proof of Proposition 2.7.
4.6. Proof of Theorem 3.1

Using a Dyson expansion we get

T
ei‘L’K}L :eiTKO +i)\./dlei(r_[)K0W€itK0
0

Tt
— 22 / / el DKo elt=9KoyeisKo g5 dr + 0 (). (4.46)
00
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Inserting (3.5), (3.14), (3.16), (3.17) in (4.46), one gets after a somewhat lengthy but straightfor-
ward computation

M, =e'™t5 +irsin(r) e P 2gy ||2 (0x ®e™ — ™= Qo)

dHLZ//( //Hg,g(rﬁ” ”gﬁ(rz)H e~ Prieit=o02=r) gy, dry + e ﬂh/zgﬂ” )

R+ R+

% (el(rﬂ)(fzo.xelt(rz ® efl(rfs)azo_xeflsaz _ el(‘[72t+2s)(fz ® eflraz) ds dz

Tt
+A2//< //||gﬂ(f”1)||2||gﬂ(r2)Hze_ﬁ”ei(’_s)(“_”)dr1 dry+ e P"2g4 ||f))
00

R+ R+
x (el(r—s)aZaxelsaZ ® e—l(r—t)aZOXG—ltaz _ el e—l(r—2t+2s)crz) ds d¢

+0(%). (4.47)

Using perturbation theory [7], we then find that M, has 4 distinct eigenvalues: 1, eg(X), e4 (1),
e_(A) which are given by

eoM) =1 =22t (a1 + o) + O(33), (4.48)

2ir A? 2 —Bh/2. |4
er(A)=e 1—T(a1+a2)+1x T He gﬂHh

1-—- -2
~ [[ e et lgonRlgsel =2 ED 4 06,
(4.49)

2.2
e_ (1) =e 2 [1 - ’\Tf(oq +ap) —irte <”C_ﬂh/28ﬂ I

—Br _Br 1 —sinc(t(r; —rp —2))
- [l e lsen e 2 E2 L o),
(4.50)

where the o s are defined in (3.21). Since they are strictly positive numbers, this proves that for
|A| small enough, the operator M) satisfies assumption (E).

It remains to prove that the asymptotic state w  is indeed given by (3.20). For that purpose,
it suffices to compute the eigenvector £235(1) of M; for the eigenvalue 1, which is obtained by
perturbation theory:

(Xlﬁ azﬁ
QL) = +
sW=o ety +az¢22

+afe P2 S Wty + 0(23). .51)

g”f(
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4.7. Proof of Theorem 3.2

Let Py denote the spectral projection on the kernel of Lo, and £2; the main term in the ex-
pansion of £25(1), i.e. 25(A) = 27 + O(X) (see e.g. (4.51)). Then, using (2.23), (2.38) and
perturbation theory, one gets

T
wi(jy) =22 [i/(gg ® 2¢|V(eTh0 — L) (1 = P)V 25 ® L2¢)
0

T

—i [ (2¢ ® 2¢|W PV 25 ® 95)} +0(»?). (4.52)
0

Moreover, as a general fact, one has PpS2) ® 2¢ = 25 ® 2¢. Now, the quadratic interaction

satisfies PoW Py = 0. Hence the second term on the right-hand side of (4.52) cancels.
Using (2.50), (3.16) and (4.51) we thus have

2Bt

o]+

X (aze*ﬁ’ — alefﬁr/) drdr’ + 0()\3).

s, =

r(2—r+r’))

/ les ) P les P @ =+ sin02< :

Inserting the expression for «; in the integral, one finally has

)\2
= st v | N0 Plasea P lssteo Plaseo |

. 2(":(2_”14"'2)) . 2<‘[(2—}’3—|—}’4)>
X s1nc —— | S1nC _—

St

2 2
X (at = =P e ) LG, )

where the integral runs over the four variables r; € RT. The result follows then from the fact
that, for any real x and y, (x — y)(e™#¥ — e~#¥) is non-negative.

4.8. Proof of Theorem 3.3

The proof goes exactly in the same way as for Theorems 3.1 and 3.2. We just give the expres-
sions for the eigenvalues (different from 1) of M), as well as the one for the entropy production.

eo(n) =1— 22t (a1 + @) + O(3%), (4.54)

) )\‘2 2
e (1) =e2”[1 - @t +ix’r / FG]

1—sinc(z(2—r)) 1—sinc(t(2+7r)) 4
><< S + >ty >]+0(x ), (4.55)
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_ 3242
e+ (A) 26_2”[1 - Tt(al + a2) —i)»ZTZ/“g(’)”z

1—sinc(z(2—r)) 1—sinc(t(2+7r)) 4
x( . + P )}Jro(x ), (4.56)

22 -2 "+2
a5, = P [gpo] sl sine (22 ) sine? (2 ) )

a] + o

A2BT / / o
st [les L lss e 0 = =)

X |:sincz<L_2)> sinc? <M> + sincz<7t(r + 2)> sincz(; o+ 2))]

+0(»%). 4.57)

x (1 _ e—ﬁ(r+r’)) +

All the integrals run over R™, and in the formula for the entropy the integration is computed with
respect to both r and r’.

4.9. Proof of Theorem 3.4

Once again the proof goes the same way, and we only give the expressions for the eigenvalues
(different from 1) of M, and for the entropy production.

A2t? 4
eo(h) =1 — m(al +a2) + O(A%),
. A2 tE
—eltEs|_ AT —BEe)sinc2( L2€
er (M) =e 5[1 2(1+eﬂE5)<a1+a2+(1+e 5)51nc< 3 )

x (la]* +|d|* — ad — a{i))

A2 1 —sinc(tEg)
. | — e—BEe 2_ a2
+11+e—ﬁEg (( c ) TEg (|a| | | )
Eg\ ad —ad 1 —si E¢—E
-l—(l—e_ﬂEg)sinc2 rre )2 .a —(l—i—e_ﬁEg) sinc(r (Eg S))|b|2
2 2i T(Eg — Es)
_ 1 —sinc(t(Eg + Eg)) 2)i| 4
+ (1 +eFPEe c + oY,
( ) t(Egc+ Es) el ( )
i A2 tE¢
_ ~—itE y v —BE )
e_(M)=e 7 8[1 2(1+e—ﬁ55)<0‘1+“2+(1+e £) sinc <—2 )

x (la]* +|d|* — ad — a&)>

2272 1 —sinc(tEg)
AT () e pEey T SMCTEE) 0 o0
e (( ) g, (4 —lal)
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E¢\ad —ad 1 —sinc(t(Eg — E
+(1—e5E5)sinc2<T 5)3 2'a —i—(]—i—e’ﬁEf) sinc(t(Eg S))|b|2
1 t(Eg — Es)

_ 1 —sinc(t(Eg + Eg))
—(1 BEs 2>i| 4 '
(1+e ) (Es + Es) lel” ) [+ 0(x%)

_ MBrEg(1—e FEe)

T (a1 +an)(1 + e PEe)
x [|b|2(|a|2 +ePEe|aP) sinc2<@> sincz(%>
+ [l (eE fal? + |dP) sinc{@) sin&(%)
+2|b?[c[* (1 + e PEe) sincz<@) sincz(@)] +0(3).
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