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FRUMAM

Abstract. We characterize the absolutely continuous spectrum of half-line one-dimensional
Schrödinger operators in terms of the limiting behavior of the Crystaline Landauer-Büttiker
conductance of the associated finite samples.

1 Introduction

This note is a direct continuation of [BJLP2] and completes the research program initiated in [BJP]. This
program concerns characterization of the absolutely continuous spectrum of half-line discrete Schrödinger
operators in terms of the limiting conductances of the associated finite samples and is intimately linked
with the celebrated Schrödinger Conjecture/Property of Schrödinger operators [Av, MMG]. In [BJLP2],
this characterization was carried out for the well-known Landauer-Büttiker (LB) and the Thouless (Th)
conductance. Here we extend these results to the Crystaline Landauer-Büttiker (CLB) conductance intro-
duced in [BJLP1]. The CLB conductance provides a natural link between the LB and Th conductances
and is likely to play an important role in future studies of transport properties of 1D samples.
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We briefly recall the setup and results of [BJLP1, BJLP2], referring the reader to the introductions of
these papers for details and additional information. The starting point is the discrete Schrödinger opera-
tor1

hS = −∆ + v,

acting on the Hilbert space `2(Z+), where Z+ denotes the set of positive integers.2 The operator hS is
the one-electron Hamiltonian of the extended sample. The one-electron Hamiltonian hSL of the sample
of length L is obtained by restricting hS to HL = `2(ZL), where ZL = {1, · · · , L}. In the Electronic
Black Box (EBB) model considered in [BJLP1, BJLP2], this finite sample is connected at its end points 1
and L to reservoirs described by the following one-electron data: Hilbert spaces Hl/r, where l/r stands
for left/right, Hamiltonians hl/r, and unit vectors ψl/r ∈ Hl/r. For latter reference, we introduce the
functions

Fl/r(E) = 〈ψl/r, (hl/r − E − i0)−1ψl/r〉, (1.1)

and the sets (note that ImFl/r(E) ≥ 0)

Σl/r = {E : ImFl/r(E) > 0}.
In the absence of coupling, the one-electron Hamiltonian of the joint system sample+reservoirs is

h0,L = hl + hSL + hr,

acting onH = Hl ⊕HL ⊕Hr. The junctions between the sample and the reservoirs are described by

hT,l = |ψl〉〈δ1|+ |δ1〉〈ψl| and hT,r = |ψr〉〈δL|+ |δL〉〈ψr|,
and the coupled one-electron Hamiltonian is

hκ,L = h0,L + κ(hT,l + hT,r),

where κ 6= 0 is a coupling constant. The left/right reservoir is initially at equilibrium at zero temperature
and chemical potential µl/r where µl < µr. The voltage differential induces a steady state charge current
from the right to the left reservoir across the sample and the corresponding conductance is given by the
Landauer-Büttiker formula, see, e.g., [La, BILP, AJPP, CJM, N],

GLB(L, I) =
1

2π|I|
∫
I
TLB(L,E) dE, (1.2)

where I = (µl, µr), |I| = µr − µl, and

TLB(L,E) = 4κ4|〈δ1, (hκ,L − E − i0)−1δL〉|2 ImFl(E) ImFr(E), (1.3)

is the transmission probability from the right to the left reservoir at energy E. Obviously, only the
energies in Σl ∩ Σr contribute to the integral (1.2). For this reason, in some applications of the LB
formula we will need to assume the transparency condition that I ⊂ Σl∩Σr (see Theorems 1.1 and 1.2).

1The setup and all our results extend to the case of Jacobi matrices, see [BJLP3]. For notational simplicity we will restrict
ourselves here to the physically relevant case of Schrödinger operators.

2For our purposes, the choice of boundary condition is irrelevant. For definiteness we shall impose Dirichlet b.c. on the
discrete Laplacian ∆.
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Figure 1: The EBBM described by the Hamiltonian h(N)
κ,L for N = 7.

The Thouless formula is the special case of Landauer-Büttiker formula in which the reservoirs are im-
plemented in such a way that the coupled Hamiltonian is the periodic discrete Schrödinger operator on
`2(Z)

hκ,L = hper,L = −∆ + vper,L,

where the sample potential v(n) is extended from ZL to Z by setting vper,L(n+mL) = v(n) for n ∈ ZL
and m ∈ Z. We shall refer to the corresponding EBB model as crystaline (see [BJLP1] for details). In
this case the transport is reflectionless and the Landauer-Büttiker formula coincides with the Thouless
formula:

GTh(L, I) =
|sp(hper,L) ∩ I|

2π|I| , (1.4)

where sp(hper,L) denotes the spectrum of hper,L.

The CLB conductance has appeared implicitly in early physicists works on Thouless conductance [ET].
The following precise mathematical definition was proposed in [BJLP2]. Consider the Landauer-Büttiker
formula G(N)

LB (L, I) for the model in which the sample SL is replaced by its N -fold repetition while the
reservoirs remain fixed (see Figure 1). The limit N → ∞ then gives the CLB formula. To describe it,
let h(l)

per,L and h(r)
per,L be the restrictions of hper,L to `2((−∞, 0] ∩ Z) and `2([1,∞) ∩ Z) with Dirichlet

boundary conditions, and

ml(L,E) = 〈δ0, (h
(l)
per,L − E − i0)−1δ0〉,

mr(L,E) = 〈δ1, (h
(r)
per,L − E − i0)−1δ1〉.

(1.5)

We set TCLB(E) = 0 for E ∈ R \ (sp(hper,L) ∩ Σl ∩ Σr) and

TCLB(L,E) =
[
1 +

1
4

( |mr(L,E)− κ2Fr(E)|2
Im (mr(L,E))Im (κ2Fr(E))

+
|ml(L,E)− κ2Fl(E)|2

Im (ml(L,E))Im (κ2Fl(E))

)]−1

(1.6)

for E ∈ sp(hper,L) ∩ Σl ∩ Σr. The Crystaline Landauer-Büttiker conductance is defined as

GCLB(L, I) =
1

2π|I|
∫
I
TCLB(L,E)dE.

In [BJLP1] it was shown that
lim
N→∞

G
(N)
LB (L, I) = GCLB(L, I),

and that
GTh(L, I) = supGCLB(L, I), (1.7)
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where the supremum is taken over all realizations of the reservoirs. The latter identity clarifies the
common heuristics in the physics literature that the Thouless conductance should be considered as an
upper bound on the possible conductances of a finite sample. Since the supremum is achieved precisely
for the crystaline EBB model [BJLP1], it also identifies the heuristic notion of “optimal feeding” of the
sample by reservoirs, needed to reach the Thouless conductance, with the reflectionless electron transport
across junctions.

Let spac(hS) denote the absolutely continuous spectrum of hS . The main result of [BJLP2] is:

Theorem 1.1 Let (Lk) be a sequence of positive integers satisfying limLk =∞. Consider the following
statements:

(1)
I ∩ spac(hS) = ∅.

(2)
lim
k→∞

GLB(Lk, I) = 0.

(3)
lim
k→∞

GTh(Lk, I) = 0.

Then (1) ⇒ (2) and (1) ⇔ (3). If the transparency condition I ⊂ Σl ∩ Σr holds, then also (2) ⇒ (1),
and all three statements are equivalent.

Remark. The transparency condition is necessary for the implication (2) ⇒ (1), and in our context it
should be considered as an assumption on the non-triviality of the setup. The same remark applies to
Theorem 1.2 below.

In this note we complete Theorem 1.1 with:

Theorem 1.2 Let (Lk) be a sequence of positive integers satisfying limLk =∞. Consider the following
statements:

(1)
I ∩ spac(hS) = ∅.

(2)
lim
k→∞

GCLB(Lk, I) = 0.

Then (1)⇒ (2). If the transparency condition I ⊂ Σl ∩ Σr holds, then also (2)⇒ (1).

Theorems 1.1 and 1.2 naturally lead to questions regarding the relative scaling and the rate of convergence
to zero of the conductances G#(L, I), # ∈ {LB,Th,CLB}, in the regime I ∩ spac(hS) = ∅. Although
these questions played a prominent role in early physicists works on the subject (see, e.g., [AL, CGM])
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we are not aware of any mathematically rigorous works on this topic. We plan to address these problems
in the continuation of our research program.

Acknowledgment. The research of V.J. was partly supported by NSERC. The research of Y.L. was partly
supported by The Israel Science Foundation (Grant No. 1105/10) and by Grant No. 2014337 from the
United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel. A part of this work has been
done during a visit of L.B. to McGill University supported by NSERC. The work of C.-A.P. has been
carried out in the framework of the Labex Archimède (ANR-11-LABX-0033) and of the A*MIDEX
project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government pro-
gram managed by the French National Research Agency (ANR).

2 Proofs

2.1 Proof of Theorem 1.2

Our proof proceeds by showing that for any sequence (Lk), the vanishing of the CLB conductance is
equivalent to the vanishing of the Th conductance. Due to (1.7), it suffices to prove that if I ⊂ Σl ∩ Σr,
then

lim
k→∞

GCLB(Lk, I) = 0 =⇒ lim
k→∞

GTh(Lk, I) = 0. (2.1)

Relation (1.6) expresses the CLB conductance in terms of the m-functions ml and mr of the periodic
operator hper,L. The first part of the proof consists in estimating these m-functions in terms of the norm
of the transfer matrix

T (L,E) =
[
v(L)− E −1

1 0

]
· · ·
[
v(1)− E −1

1 0

]
,

of hS for fixed L; see Proposition 2.4 below.

The connection between the m-functions and the transfer matrix is provided by the following lemma
(see [BJLP1, Lemma 3.3]).

Lemma 2.1 For any E ∈ sp(hper,L), the eigenvalues of T (L,E) are of the form e±iθ(L,E) and

ψ+(L,E) =
[

1
mr(L,E)−1

]
and ψ−(L,E) =

[
1

ml(L,E)

]
,

are corresponding eigenvectors.

Remark. The fact that the eigenvalues of T (L,E) are complex conjugate further implies the following
relation between the two m-functions: mr(L,E)−1 = ml(L,E), i.e. mrml = 1.

The following proposition provides a lower bound of the CLB conductance in terms of the transfer matrix
T (L,E) and the imaginary part of its eigenvalues.
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Proposition 2.2 If there exists δ,M > 0 such that ImFl/r(E + i0) > δ and |Fl/r(E + i0)| ≤ M for
a.e. E ∈ I , then there exists C > 0 such that for any L

GCLB(L, I) ≥ 1
2π|I|

∫
I∩sp(hper,L)

[
1 + C

‖T (L,E)‖
| sin(θ(L,E))|

]−1

dE. (2.2)

Proof. One easily gets from (1.6) that

GCLB(L, I) ≥ 1
2π|I|

∫
I∩sp(hper,L)

[
1 +

A+B|mr(L,E)|2
2Im (mr(L,E))

+
A+B|ml(L,E)|2

2Im (ml(L,E))

]−1

dE,

with A = κ2M2

δ and B = 1
κ2δ

, where we used that I ⊂ Σl ∩ Σr. Since mrml = 1,

A+B|mr(L,E)|2
Im (mr(L,E))

=
A|ml(L,E)|2 +B

Im (ml(L,E))
.

Hence, with C = max(A,B), we have

GCLB(L, I) ≥ 1
2π|I|

∫
I∩sp(hper,L)

[
1 + C

1 + |ml(L,E)|2
Im (ml(L,E))

]−1

dE. (2.3)

We now relate the integrand on the right-hand side of the last inequality to the transfer matrix T (L,E).
Using Lemma 2.1 and mrml = 1, an easy calculation gives

T (L,E) =
1

Im (ml(L,E))

[
Im (eiθ(L,E)ml(L,E)) − sin(θ(L,E))
|ml(L,E)|2 sin(θ(L,E)) Im (e−iθ(L,E)ml(L,E))

]
,

from which we get the lower bound

‖T (L,E)‖ ≥ C ′| sin(θ(L,E))|1 + |ml(L,E)|2
Im (ml(L,E))

,

for some positive constant C ′. Inserting this inequality into (2.3) completes the proof. 2

In view of (2.2), to get a lower bound of the CLB conductance in terms of the norm of the transfer matrix,
the only issue is when | sin(θ(L,E))| gets small. The following shows that this cannot happen too often.
In the sequel, |A| denotes the Lebesgue measure of A ⊂ R.

Lemma 2.3 For any ε > 0 and all L,

| {E ∈ sp(hper,L) : | sin(θ(L,E))| ≤ ε} | ≤ 2πε.

The proof of this lemma relies on a general estimate on the so-called dispersion curves of the periodic
operator hper,L and requires additional notation and facts. We postpone it to Section 2.2.

Combining Proposition 2.2 with Lemma 2.3 and recalling the inequality ‖T (L,E)‖ ≥ 1, we get
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Proposition 2.4 If there exists δ,M > 0 such that ImFl/r(E + i0) > δ and |Fl/r(E + i0)| ≤ M for
a.e. E ∈ I , then there exists C > 0 such that for any ε > 0 and all L,

GCLB(L, I) ≥ 1
2π|I|

(
1 + Cε−1

)−1
∫
I∩(sp(hper,L)\Ωε,L)

‖T (L,E)‖−1dE,

with |Ωε,L| ≤ 2πε.

Our last ingredient is the following estimate on the norm of transfer matrices which was proven in [BJLP2,
Section 5.3].

Proposition 2.5 There exists a set Oε,L ⊂ sp(hper,L) such that |Oε,L| ≤ (1 + π)ε and

‖T (L,E)‖ ≤ 8π
ε2
, ∀E ∈ sp(hper,L) \Oε,L.

We are now in position to finish the proof of Theorem 1.2. For any n > 0, let

In := {E ∈ I : ImFl/r(E + i0) > 1/n and |Fl/r(E + i0)| ≤ n},

and I ′n = I \ In. Obviously, since I ⊂ Σl ∩ Σr, lim
n→∞

|I ′n| = 0.

Using Proposition 2.4 together with Proposition 2.5 on In, one gets that for any n and for any ε > 0,

|I|GCLB(L, I) ≥ |In|GCLB(L, In)

≥ |In|
(
1 + Cnε

−1
)−1

∫
In∩(sp(hper,L)\Ωε,L)

‖T (L,E)‖−1dE

≥ |In|
(
1 + Cnε

−1
)−1 ε2

8π
(|sp(hper,L) ∩ In| − |Ωε,L| − |Oε,L|)

≥ |In|
(
1 + Cnε

−1
)−1 ε2

8π
(|sp(hper,L) ∩ I| − |I ′n| − (1 + 3π)ε

)
,

for some Cn which does not depend on ε and L.

Suppose now that the sequence (Lk) is such that lim
k→∞

GCLB(Lk, I) = 0. It follows that

lim sup
k→∞

|sp(hper,Lk) ∩ I| ≤ |I ′n|+ (1 + 3π)ε.

Since this holds for any ε > 0 and |I ′n| → 0, this proves that lim
k→∞

|sp(hper,Lk) ∩ I| = 0, and hence

lim
k→∞

GTh(Lk, I) = 0.

2.2 Proof of Lemma 2.3

We first introduce some notation and recall a few basic facts about periodic operators, referring the reader
to [Si, Chapter 5] for proofs and additional information.
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For any k ∈ R and m ∈ Z let

H(k,m) =


vper(m+ 1) −1 · · · 0 −e−ikL

−1 vper(m+ 2) · · · 0 0
...

...
. . .

...
...

0 0 · · · vper(m+ L− 1) −1
−eikL 0 · · · −1 vper(m+ L)

 ,

and denote byE1(k) ≤ · · · ≤ EL(k) the repeated eigenvalues ofH(k, 0). The functions R 3 k 7→ E`(k)
are called the dispersion curves and will be the key object in the proof of Lemma 2.3. They are 2π/L-
periodic and even. They are strictly monotone and real analytic on the interval (0, π/L). Moreover, they
satisfy

EL(0) > EL

(π
L

)
≥ EL−1

(π
L

)
> EL−1(0) ≥ EL−2(0) > · · ·

This implies in particular that each E`(k) is a simple eigenvalue of H(k, 0) for k ∈ (0, π/L). It follows
that for each ` ∈ {1, . . . , L} there is a unique real analytic function

(0, π/L) 3 k 7→ ~u`(k) = (u`(k, 1), . . . , u`(k, L))T ∈ CL,

such that H(k, 0)~u`(k) = E`(k)~u`(k), u`(k, 1) > 0 and ‖~u`(k)‖ = 1. A bounded two-sided sequence
u`(k) = (u`(k,m))m∈Z is obtained by setting

u`(k, j + nL) = eiknLu`(k, j), (2.4)

for any j ∈ {1, . . . , L} and n ∈ Z. Then, for any m ∈ Z,

~u`(k,m) = (u`(k,m+ 1), . . . , u`(k,m+ L))T ,

is a normalized eigenvector of H(k,m) for the eigenvalue E`(k).

It follows from Floquet theory that E ∈ sp(hper,L) iff the eigenvalue equation

hper,Lu = Eu (2.5)

has a non-trivial solution u satisfying u(n+L) = eikLu(n) for some k ∈ R and all n ∈ Z. This solution
is called Bloch wave of energy E and u is such a Bloch wave if and only if E = E`(k) for some ` and
(u(1), . . . , u(L))T is an eigenvector of H(k, 0) for E`(k). In particular, for any m,

sp(hper,L) =
⋃

k∈[0,π/L]

sp(H(k)) =
L⋃
`=1

B`,

where B` is the closed interval with boundary points E`(0) and E`(π/L). The B` are called spectral
bands of hper,L and have pairwise disjoint interiors. E is an interior point of B` iff E = E`(k) for some
k ∈ (0, π/L). Because E` is monotone such a k is unique and we shall denote it k(E). On each band
B`, the function k(E) is thus a strictly monotone function whose image is (0, π/L).
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The characteristic polynomial of H(k,m) satisfies

det(H(k,m)− z) = tr(T (L, z))− 2 cos(kL).

As a consequence, sp(hper,L) = {E : |tr(T (L,E))| ≤ 2} and, for any E ∈ sp(hper,L), k(E) is
determined by the identity

tr(T (L,E)) = 2 cos(k(E)L).

Since det(T (L,E)) = 1, one infers that for E ∈ sp(hper,L) the eigenvalues of T (L,E) actually are
e±ik(E)L, i.e., θ(L,E) = ±k(E)L. The proof of Lemma 2.3 relies of the following general estimate.

Proposition 2.6 For any ` = 1, . . . , L and k ∈ (0, πL) one has

|E′`(k)| ≤ 2.

Although not explicitly stated, this result already appears in [BJLP2] (in the proof of Proposition 5.2).
For the convenience of the reader we give its proof.

Proof. For any k and m the vector ~u`(k,m) = (u`(k,m + 1), . . . , u`(k,m + L))T is a normalized
eigenvector of H(k,m) for E`(k). The Feynman-Hellmann formula gives

E′`(k) =
〈
~u`(k,m),

dH(k,m)
dk

~u`(k,m)
〉

= iL
(
u`(k,m+ 1)e−ikLu`(k,m+ L)− u`(k,m+ L)eikLu`(k,m+ 1)

)
,

and the relation (2.4) yields

E′`(k) = 2L Im
(
u`(k,m)u`(k,m+ 1)

)
,

for all m. Summing over m = 1, . . . , L, we can write

E′`(k) =
L∑

m=1

2 Im
(
u`(k,m)u`(k,m+ 1)

)
.

The normalization of u` yields

|E′`(k)| ≤
L∑

m=1

(|u`(k,m)|2 + |u`(k,m+ 1)|2) = ‖~u`(k, 0)‖2 + ‖~u`(k, 1)‖2 = 2.

2

Proof of Lemma 2.3. Fix ε > 0. Since θ(L,E) = ±k(E)L is a monotone function in each spectral
bandB` and varies between 0 and π, | sin(θ(L,E))| ≤ ε can only hold near the band edges (sin(θ(L,E))
vanishes precisely at these edges). From Proposition 2.6 we get that for any E ∈ sp(hper,L)

|θ′(L,E)| ≥ L

2
. (2.6)
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Using sin(α) ≥ 2α
π for 0 ≤ α ≤ π

2 or sin(α) ≥ 2− 2α
π for π2 ≤ α ≤ π one has, for any band B`,

|{E ∈ B` : | sin(θ(L,E))| ≤ ε}| ≤
∣∣∣{E ∈ B` : |θ(L,E)| ≤ επ

2

}∣∣∣+∣∣∣{E ∈ B` : |π − θ(L,E)| ≤ επ

2

}∣∣∣ ,
which together with (2.6) gives

|{E ∈ B` : | sin(θ(L,E))| ≤ ε}| ≤ 2επ
L
.

Summing these inequalities over the L bands proves the lemma. 2
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[BJLP1] Bruneau, L., Jakšić, V., Last, Y., and Pillet, C.A.: Landauer-Büttiker and Thouless conduc-
tance. Commun. Math. Phys. 338, 347–366 (2015).
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