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Abstract

We study linear response theory and entropic fluctuations of finite dimensional non-
equilibrium Repeated Interaction Systems (RIS). More precisely, in a situation where the
temperatures of the probes can take a finite number of different values, we prove analogs
of the Green-Kubo fluctuation-dissipation formula and Onsager reciprocity relations on
energy flux observables. Then we prove a Large Deviation Principle, or Fluctuation The-
orem, and a Central Limit Theorem on the full counting statistics of entropy fluxes. We
consider two types of non-equilibrium RIS: either the temperatures of the probes are de-
terministic and arrive in a cyclic way, or the temperatures of the probes are described by
a sequence of i.i.d. random variables with uniform distribution over a finite set.

1 Introduction

In this paper we are interested in the linear response theory and entropic fluctuation for
a particular class of open quantum systems called Repeated Interaction Systems (RIS), see
Section |3| for a precise description. Our study fits in the wider framework of non-equilibrium
quantum statistical mechanics. In this context, linear response theory and entropic fluctuation
have attracted lot of attention in the last decades, see e.g. [LS| DS, [JOPIl JOP2 [JOP3, [JOP4]
JPP, [dRM, |dR) [JOPPL BPR] and references therein.

Repeated interaction systems consist of a small system S coupled to an environment made
of a chain of independent probes £ with which § will interact in a sequential way, i.e. S
interacts with £! during the time interval [0, 71 [, then with £2 during the interval [y, 71 + 7,
etc. While S interacts with a given probe £" the other ones evolve freely according to
their intrinsic (uncoupled) dynamics. Formally, if Hs and Hgn denote the non-interacting
hamiltonians of S and the £™’s and V,, denotes the coupling operator between S and £" then
the hamiltonian of the full system is the time-dependent, piecewise constant, operator

H(t):= Hs+ Hgn + Vj, + 2 Hep, te[m+--+Tp1,71+ -+ Tnl (1.1)
p#Fn
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In the simplest case all the probes are identical (each £" is a copy of the same £ with
the same initial state pg, e.g. a thermal state) and interact with S by means of the same
coupling operator V on § + £ and for the same duration 7. The dynamics restricted to the
small system is shown to be determined by a map £, see (2.2), which assigns p(7) = L(p) to
p as the result of the interaction of S with one subsystem &£ for the duration 7. Heuristically,
from the point of view of the small system, all subsystems interacting in sequence with S are
equivalent, so that the result of n € N repeated interactions amounts to iterating n times the
map L on the initial state ps. This expresses the markovian character of repeated interactions
in discrete time, see e.g. [BJM3]| for an introduction to these RIS.

The typical physical situation of repeated interaction models is that of the one atom
maser, see e.g. [EJM, MWM, RBH, WBKM]. Here S is the quantized electromagnetic field
in a cavity through which a beam of atoms, the £™’s, is shot in such a way that, at least with
very high probability [HBR], no more than one atom is present in the cavity at any time. Such
systems play a fundamental role in the experimental and theoretical investigations of basic
matter-radiation processes. On the mathematical side various aspects of RIS, or quantum
Markov chains, have been studied in the literature, see e.g. [KM, [AP, [AJ, BJMI), BJM2
Pe, [PeP| [NPel BBB, Wo, WHG, [GK| BEFS| [CP, [HJPR] and references therein. We mention
also [BP), WHG2|, Bru] for the analysis of a specific model related to the one-atom maser and
[HMO] for related results in the framework of correlated quantum spin chains. We refer the
reader to the lecture notes [Wo|] and references therein for related results in the context of
quantum information theory.

In order to consider a non-equilibrium situation we shall naturally consider here the more
interesting situation where the probes are not always identical but allowed to vary over a
finite set, especially via the temperatures of their initial states pgn. The picture one should
have in mind is that the system S is coupled to finitely many reservoirs Ri,..., Ry (M = 2)
which are initially in thermal equilibrium at possibly different temperatures. Each probe is
then associated to one of these M reservoirs, all the probes of a given reservoir being identical.
After n interactions the state of S is thus given by

pn = Lj, 00 Lj (p) (1.2)

where j1,...,jn € {1,..., M} describes the ordered sequence of the probes.

Our first results deal with the linear response theory for energy fluxes out of the reser-
voirs. Linear response theory describes thermodynamics when the system under consideration
is close to equilibrium. To first order the non-equilibrium energy fluxes depend linearly on
the driving forces and we are interested in the corresponding response (or kinetic) coefficients,
see . The main results in linear response theory are concerned with the Green-Kubo
fluctuation-dissipation formula, Onsager reciprocity relations and a central limit theorem.
Green-Kubo formula expresses the kinetic coefficients in terms of dynamical flux-flux corre-
lations at equilibrium, Onsager relations expresses a symmetry in these coefficients and the
central limit theorem relates the kinetic coefficients to fluctuations of the energy fluxes at
equilibrium. We address all these questions in the framework of repeated interaction systems.
Our main results are Theorem [£.4] and 5.9

The second series of results deals with the fluctuation of entropy production and the so-
called fluctuation relations. By fluctuation of entropy production we mean a large deviation
principle for the statistics of entropy production, see Theorem To do so we adopt the
two-time measurement protocol introduced independently by Kurchan [Ku| and Tasaki [Ta].



A very similar large deviation principle as well as a central limit theorem similar to the one
we have mentioned are proven in [vHG] for output statistics of quantum Markov chains. The
only difference is that their statistics concern a single, post interaction, measurement while we
consider a double, pre and post interaction, measurement. However from a mathematical per-
spective this causes only minor changes. Our main new result here concerns two symmetries
satisfied by the large deviation rate function, or in equivalent way by the moment generating
function. The first symmetry is what is usually called the fluctuation relation and can be
understood as a generalization of the linear response results for systems far from equilibrium
[Ga]. The second symmetry is a translation symmetry which is a refinement of energy conser-
vation. To the best of our knowledge this translation symmetry goes back to [AGMT]. These
two symmetries are fundamental results with deep consequences on the second and first law
of thermodynamics respectively. We mention that in [vHG] no such fluctuation relations were
proven.

In the framework of continuous-time quantum dynamical semigroups £; := e'f, L =
Ly + ---+ Ly and where L; is the Lindblad generator describing the interaction with the
j-th reservoir, those questions have been initiated in [LS] and then more recently studied in
[DdrM, dRM, [JTPW]. Eq. suggests that the situation should be very similar, if not
identical, for RIS except that we have a discrete-time dynamics. As we shall see this is only
partly correct. If the global strategy of the proofs largely follows those in [LS, JPW| VHG],
RIS however have several specificities that have to be taken into account.

The first one can easily be seen from . As mentioned above there is a specific order
in which S interacts with the various probes. In order to make sure that S interacts as much
with each reservoir the first, maybe naive, idea is to make the order of interactions cyclic:
S interacts first with a probe associated to R, then to R and so on up to Rjy; and then
R1 again etc. In this case, if it is possible to derive a Green-Kubo type formula we will see
that the usual Onsager reciprocity relations will fail, and similarly for the fluctuation relation
of entropy production. The reason is simply that the cyclic order of interactions breaks
time-reversal invariance even if we suppose that each interaction is time-reversal invariant.
Due to the cyclic order of the interactions it is for example not surprising that a change of
temperature in Ry will have a greater influence on the energy flux out of Ry than a change
of temperature in Ro will have on the flux out of R1. What one gets actually resembles the
Onsager-Casimir relations one can find in the presence of a magnetic field. Namely, one has
to compare the kinetic coefficients of the cyclic model with those of the reversed cyclic model
in which the order of interactions is exactly the opposite, see and . The study of
this cyclic model provides a simple example which shows how much time-reversal invariance
is fundamental, in particulier in the derivation of the usual fluctuation relations.

To remedy this lack of global time-reversal invariance we shall therefore also consider the
situation where the probes associated to the various reservoirs interact with S in a random
order. To make it simple we shall consider here the case where the probes are chosen inde-
pendently at each time and with a uniform distribution (so that on average S interacts as
much with each reservoir). Our results can be easily generalized to the case of an arbitrary
i.i.d. distribution. The case where the distribution of the probes is given by a more general
Markov process will be considered in [BJP].

The second specificity is related to the fact that the RIS hamiltonian is time-
dependent. As a consequence, even in the ideal case where all the probes are identical,
this may lead to a non-vanishing of entropy production which is usually considered as the
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signature of a non-equilibrium situation. In this paper we are interested in the response of
the system to the presence of thermal forces. This forces us to impose some extra assump-
tion called Assumption (NEJ|), see Section which guarantees that the case where all the
temperatures of the various reservoirs are equal is indeed an equilibrium situation. A general
linear response theory for RIS should also take into account a departure from this assumption.
It is however not clear at the moment how to quantify this or, said differently, what is the
natural quantity one can associate to a generic RIS and the vanishing of which would corre-
spond to the fulfilment of Assumption . We therefore postpone this question to future
work. Regarding this point we finally mention that the question of linear response theory
for time-dependent quantum hamiltonians have been considered in [DS], in a weak-coupling
regime, but there only the perturbation was time-dependent contrary to what happens in
RIS.

Finally, to avoid technical issues we shall stick here to the case where all the subsystem’s
Hilbert spaces, for S and the £™’s, are finite dimensional. Most results can easily be extended
to infinite dimension provided the various assumptions are adapted in an ad hoc way, in partic-
ular the ergodic Assumption of Section has to require the existence of a spectral
gap. It is however difficult to find physically relevant models to which these assumptions
apply. The model for the one-atom maser studied in [BPL [Bru] does not have a spectral gap
for example. Nevertheless it is still possible to prove the Green-Kubo formula and Onsager
relations for this model, see [Bo]. We also mention [BDBP] which considers a RIS type model
for the motion of a tight-binding electron and where an analog of the fluctuation relation is
proven for the position increments of the electron.

The paper is organized as follows. In Section [2| we briefly recall some basic concepts of
open systems. In Section [3| we describe the non-equilibrium RIS model and state the various
assumptions which we will use. We will in particular describe in more detail the above
mentioned Assumption and discuss its origin and some of its consequences. Section
[] is devoted to the linear response theory and in particular the derivation of Green-Kubo
formula and of Onsager reciprocity relations. These are stated in Theorem In Section
] we consider the fluctuation of entropy production and prove a fluctuation relation for RIS.
We also complement linear response theory with a Central Limit Theorem. Our main results
in this section are Theorems and Finally the proofs are given in Section [6]

Acknowledgements. This research was supported by the Agence Nationale de la Recherche
through the grant NONSTOPS (ANR-17-CE40-0006) and by the Initiative d’excellence Paris-
Seine. The research of JFB is partially funded by the Cross Disciplinary Program “Quantum
Engineering Grenoble”. LB warmly thanks UMI-CRM of Montreal for financial support and
McGill University for its hospitality during an earlier stage of this work. We thank the
anonymous referees for their constructive remarks and suggestions.

2 Preliminaries

2.1 Observables, states and their evolution

All the Hilbert spaces considered in the paper are finite dimensional. We denote by 1 the
identity operator (we shall sometimes indicate 1 to specify the underlying Hilbert space H if
any confusion is possible). Observables on H are described by self-adjoint elements in B(H).
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States are given by density matrices, i.e. positive elements with unit trace, and we shall use
the same symbol for a density matrix p and for the associated positive unital linear functional
A Tr(pA), ie. p(A) will stand for Tr(pA) the expectation value of the observable A in the
state p. A state p is said to be faithful if it is positive definite.

A bounded linear map ® acting on B(#) is called positive (or positivity preserving) if
®(A) is non-negative for any non-negative A € B(#H). ® is said to be completely positive if,
for any d > 0, @ ®1p(ca) is a positive map. It is called unital if (1) = 1 and trace-preserving
if Tr(®(p)) = Tr(p) for any p. Note that @ is trace-preserving iff its dual map ®* is unital,
and where ®* is such that Tr(®(p)A) = Tr(p *(A)) for any p and A.

In the markovian description of open quantum systems the evolution of a state is described
by a completely positive and trace-preserving (CPTP) map (Schrédinger picture) while the
one of an observable is described by a completely positive and unital map (Heisenberg picture),
see Section If £ is a CPTP map then (L£"),en is called a quantum dynamical semigroup.
Obviously the large time (n — o0) limit of quantum dynamical semigroups is closely related to
the spectral properties of the map L. It is known that positive maps satisfy Perron-Frobenius
type results, see e.g. [EHK,[Wo]. In particular their spectral radius is always an eigenvalue and
there is a non-negative corresponding eigenvector. If moreover £ is CPTP then its spectral
radius is 1 so that £ admits an invariant state. We recall that any completely positive map
can be written in the form

o) =SV v 21)
=1

where the V;’s are in B(H) and m € N. Such a form is called a Kraus representation of £ [Ki],
it is however not unique. The following notion of primitive CPTP map will play an important
role in the paper.

Definition 2.1. Let £ be a completely positive map on B(H) given by (2.1). Then L is
primitive if there exists n € N such that Span{V;, ---V;, |i1,...,in € I} = B(H).

Remark 2.1. There are actually several equivalent definitions of primitive positive maps. The
one given here is the simplest for our purpose. We refer the reader to e.g. [Wo| for a more
detailed discussion on the subject.

The importance of the notion of primitive map for our purpose is due to the following
Proposition, see e.g. [Wol,

Proposition 2.1. Let L be a completely positive map and denote by r its spectral radius. L
1s primitive iff its spectral radius is a simple dominant eigenvalue, i.e. all other eigenvalues
A satisfy |\ < r, with positive definite left and right eigenvectors.

When L is CPTP its spectral radius is 1 and its dual map £* is unital, so that 1 is a
left eigenvector. Hence the above proposition can simply be rephrased as “a CPTP map £
is primitive if and only if 1 is a simple dominant eigenvalue and £ admits a (unique) faithful
invariant state”. Using spectral decomposition the notion of primitive CPTP map is thus
immediately related to strong ergodic properties of the corresponding quantum dynamical
semigroup.

Proposition 2.2. Let (L™)nen be a quantum dynamical semigroup. L is primitive if and only
if for any state p one has hIE L"(p) = p4, where py is the unique faithful invariant state
n—-+ao0

of L. In other words py is mizing for the semigroup generated by L.
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A slightly stronger notion is sometimes useful. A map L is called positivity improving if
for any non-negative and non-zero A its image £(A) is positive definite. It is easy to see that
if a CP map is positivity improving then it is primitive.

Finally, if H1, Ho are two Hilbert spaces and p is a density matrix on H; ® Hs, we denote
by p1 := Try, (p) the partial trace of p with respect to Hs. It is the unique density matrix on
‘H1 such that for all A € B(#H;) one has Tr(p x A®Q ly,) = Tr(p1A). Similarly given a density
matrix py on Ho and an observable A € B(H1 ® Hz). Then A; := Try, (1y, ® p2 x A) is the
unique element in B(H;) such that for any state p; on H1 one has Tr(p; ®p2 x A) = Tr(p1A1).
Ay is called the partial trace of A w.r.t. the state py, and will be denoted A; = Tr,,(A).

2.2 Open quantum systems

A quantum system S is said to be open when it interacts with another quantum system £. S
is sometimes called the small system, £ the environment (which can further be made of several
components), and S + £ is the global system. If Hs and H¢ are the Hilbert spaces describing
S and & respectively then the Hilbert space of the global system is Hsie = Hs ® He, and if
the joint system S + £ is in the state psye then S is in the reduced state ps = Try, (ps+e)-
Similarly, if the system is initially decoupled, i.e. § + £ is in a state psie = ps ® ps where
ps and pg are the states of S and & respectively, then for an observable A € B(Hs ® He) of
the global system, the observable “seen by §” is Tr,. (A4) = Try, (1® pe x A).

The non-interacting dynamics of & and £ are described by hamiltonians Hs and Hg
respectively and the interaction between & and £ by some interaction operator V acting on
Hs®He. Then H := Hs® 1+ 1® He + V is the hamiltonian for the joint evolution. In the
sequel we will often omit the inessential factors 1 in the tensor products.

Fix now some initial (or reference) state pg of the environment and suppose the system is
in some initially decoupled state p® pe. Then the state of the global system S + £ after some
time 7 > 0is U x p® pe x U* where U := e~"H, Hence the small system S is in the state

£(p) = Trae (U x p@ ps x U*). (2.2)

One easily checks that £ defines a CPTP map. It is called the reduced dynamics map of S
associated to the open quantum system S + £ and for the duration 7. Its dual map describes
the evolution of observables A € B(Hs) and is given by

L*(A) = Trp, (U x AQ 1 x U).

2.3 Entropy production in an open system

The entropy observable of a quantum system in the faithful state p is defined as S(p) :=
—log p where log denotes the natural logarithm. The von Neumann entropy of p is then the
expectation value of S(p) in the state p, i.e. Ent(p) := —Tr(plogp) = p(S(p)). The relative
entropy of p relatively to the faithful state v is then

Ent(p|v) := Tr(p(log p — logv)) = p(S(v) — S(p)).

It is well-known that Ent(p,v) = 0 and Ent(p, ) = 0 if and only if p = v.
Consider an open system S + £ as in Section interacting for a duration 7 > 0.
Denote by U the unitary evolution of the joint system and £ the reduced dynamics on & as
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given by (2.2). Assume moreover that the system £ is initially in thermal equilibrium, i.e.
—BH¢
e
shows that the following entropy balance equation holds, see also [HIJPR],

is a Gibbs state at some inverse temperature S. Then a simple calculation

Ent(L(p)) — Ent(p) = Ent(U x p® pe x U* | L(p) ®ps) — AT ((p® pe)(U* HeU — He)). (2.3)

The second term of the right-hand side can be interpreted as the entropy flux coming from &
(it is [ times the energy variation in £). This motivates the following

Definition 2.2. We define the entropy production of S during its interaction with £ by
o:=Ent(U x p®ps x U*| L(p) ® pg). (2.4)

The entropy production is meant to be always nonnegative and to be zero iff there is no
energy flux between S and £. As a matter of fact one easily infers that

c=0 < Tr(p®ps(U*HeU — Hg)) = Ent(L(p)) — Ent(p) = 0.

Indeed, see also Section 2 in [JP], 0 = 0 iff U x p® pg x U* = L(p) ® pe so that if ¢ = 0 then
on one hand

Tr(p® pe(U*HeU — He)) = Tr(L(p) ® pe He — p® peHe) = Tr(L(p) — p) x Tr(peHe) = 0,
because L is trace preserving, and on the other hand

Ent(p)+Ent(pg) = Ent(p®pg) = Ent(UxpQ®pe xU™*) = Ent(L(p)®ps) = Ent(L(p))+Ent(pg).

The other implication follows directly from .

The fact that o = 0 iff U x p® pe x U* = L(p) ® ps can also be rephrased as follows: the
entropy production vanishes iff the joint system S + £ is left non-entangled by the dynamics
with moreover the state of £ being invariant. This leads to the following definition.

Definition 2.3. Let U be a unitary operator on Hs ® He, p a state on Hs and pg a state on
He. We say that the triple (U, p, pg) satisfies the Non-Entanglement condition if

Uxp®psxU*=L(p)® ps, (2.5)
i other words if the entropy production of the associated open system vanishes.

The importance of this Non-Entanglement condition for RIS will be made more transpar-
ent in Section We mention that it also appears in [HJPR] in the context of adiabatic
RIS. At this point we simply note that if p is an invariant state of £ then the triple (U, p, pg)
satisfies the Non-Entanglement condition if and only if p ® pg is an invariant state of the
interacting dynamics, i.e.

Uxp®pexU* =p® pe. (2.6)

As a consequence the entropy observable

S(p®pe) = —log(p) ® 1 — 1@ log(pe) (2.7)

is a constant of motion.
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3 Non-equilibrium Repeated Interaction Systems

3.1 Repeated Interaction Systems (RIS)

Repeated Interaction Systems form a specific class of open quantum systems in which the
environment € has the following structure & = &' + £2 4+ --- " + ... where (£7), is a
sequence of quantum subsystems with associated Hilbert spaces Hen and free hamiltonians
Hgen. S will be called the small system and the £™’s will be called the probes. The Repeated
Interaction dynamics consists in the joint evolution of S and £ for a duration 71, immediately
followed by the joint evolution of S and £2 for a duration 73, etc. For any n,p € N*, £ and
EP are disjoint and never interact directly. The interaction between S and £" is described by
the interaction operator V,,. Hence during the n-th interaction the coupled hamiltonian is

H, =Hs®@1+1® Hgn + V,,,

and the unitary propagator for the coupled dynamics describing the N first interactions is
thus given by UnUn_1 - - - Uy where U, := e_iT"H", n=1,...,N. Note that by construction
the various Hgn commute and that [Hgn, H,| = 0 whenever n # p.

If § is initially in the state p and the n-th probe is in the state pgn which we assume to
be invariant for the free dynamics of £7, then the state of S after NV interactions is given by

pn = Trn @ @iy (U Ul X p@par @@ pen x Uy -+ UY). (3.1)

It is easy to see that the Repeated Interaction structure induces the following markovian
behaviour, see e.g. [BJM3] for more details,

pn = Tryy (Un X pn-1® pen x UN) =1 Ln(pn—1),
so that if, for any n, the map

‘Cn(p) = Tng7L (Un X p®p5” X U:)7

denotes the reduced dynamics map associated to the interaction of S with the probe £", we
have

pN =Lyo---0Ly(p). (3.2)

In the simplest situation the probes are copies of an identical system &, i.e. Hen = He,
Hen = He, V, =V, 1y, =7, pen = pe. Then the reduced dynamics maps coincide, £, = L,
and the evolution of the system S is given by py = £V (p). We shall refer to this situation as
an equilibrium situation, the various probes being considered as elements of a single reservoir.
One may think of the initial states of the probes as Gibbs states at some common inverse
temperature 5.

3.2 Non-equilibrium RIS

In this paper we are interested in understanding RIS in a non-equilibrium situation. The pic-
ture one should have in mind is that the system S is coupled to several reservoirs Ry, ..., R
(M > 2) which are initially in thermal equilibrium but at possibly different temperatures.
The various probes are then associated to one of these M reservoirs.
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More precisely, we fix a finite set of quantum systems &;, j = 1,..., M, with the associated
Hilbert spaces Hg;, free hamiltonians Hg,, interaction operators Vj, interaction times 7; and
initial states pg;. Then Hj, U; and L; denote respectively the interacting hamiltonian, acting
on Hs ® He;, unitary propagator and reduced dynamics map as given by . Each probe
will be a copy of one of these M systems.

Remark 3.1. To have a simple picture in mind the reader should think of all data identical,
Le. He, =He, He; = He, Vj =V, 7; = 7, except for the initial states pg; which are Gibbs
states at possibly different temperatures B]._l.

The sequence of probes is then described by a sequence j := (jp)nen+ € {1,..., M }N* where
Jn will specify which of the M systems &£;’s the probe £" is a copy of, i.e. Yn e N* " =¢; .
Thus S interacts with M reservoirs Ri,..., Ry where R; denotes the “union” of all the
probes corresponding to the index j, i.e.

Rji= - &

n:]’ﬂ:J
If p is the initial state of S then after n interactions § is in the state
pn(j) = ‘Cjn o ‘Cjnfl ©-+-0 E]l (p)
Accordingly, for an observable A € B(Hs), the corresponding Heisenberg evolution is
An(g) := L5, 0 L, 0---0 L] (A).

In this paper, we shall consider two specific and rather natural situation of non-equilibrium
RIS whose reduced dynamics can be linked to a discrete quantum dynamical semigroup.

3.2.1 Cyclic case

A non-equilibrium RIS is called cyclic when S interacts first with Ry, then Ro,..., R,
then R; again, etc. In other words the sequence j describing the interactions is the M-
periodic sequence j = (jr’), where for any k€ {1,...,M} and n € N one has 5% , = k.
Consequently, the reduced dynamics of S over the cycles can be described by the discrete
semigroup (E?y)n where

Ley:=LyoLpy—10---0Lq. (3.3)

Note that Ley(p) = Try,, (Uey x p @ pey x Ugy), where &gy = & + -+ + En, He,, =
H(€1®"'®H51u7 Ucy = UMUI and Pcy ‘= P& ®®p5M

3.2.2 Random case

A non-equilibrium RIS is called random when the order in which the small system S in-
teracts with the (R;)i1<j<m is described by a random process, i.e. for each interaction the
subsystem &; of which £" is a copy will be chosen randomly from &p,...,&y. The mo-
tivation to consider random RIS is related to the question of time-reversal invariance, see
Remark in Section Let p denote the uniform probability measure on {1,..., M}
and P the standard convoluted probability measure on {1,..., M }N* associated to p. For any
T < {1,..., M}N*, P(T) is the probability for the random RIS to interact successively with
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the reservoirs Rj,,Rj,, -+, Rj,, -+ with 3 = (jn)n € T. We denote by Ep the expectation
value w.r.t. a measure IP. The choice of the measure P reflects the fact that the order in which
the reservoirs R1,..., Ry will interact with S is chosen in an i.i.d. manner but on average
S will interact equally much with each of them. This is the simplest and only case we shall
consider here. A generalization of our results to a Markovian situation will be considered in
the forthcoming paper [BJP].

Then one easily gets that Ep(L;, o Lj, ,0---0L; ) = L}, where

1
Lyq :=Ey(Lj) = Wi L1+ +Lu).
Thus, at least in expectation, the reduced dynamics of S can be described by the semigroup
(L7 )nen. We say at least because of the following theorem which was proven in [BJM2] (it

is a particular case of Theorem 1.3 in that paper)

Theorem 3.1. Suppose that there exists 1 < j < M such that L; is primitive. Then Ly,
s primitive. Moreover the random RIS dynamics converges almost surely and in the ergodic
mean to the unique invariant state of L.,. More precisely, there is a subset T < {1,..., M}N*
such that P(T) = 1 and for any j € T, any density matriz p, and any family of observables
{1,...,M}>j— A(j) € B(Hs) one has

1 & . v
G 7;1 Tr (L), 0 0Ly (p) x A(jn)) = Tr (07 x Ep(A)), (3.4)

where p denotes the unique invariant state of Lo and Ey(A) = (A1) + -+ + A(M)).

Remark 3.2. The observables A(j) should be understood in the following sense. They repre-
sent the same physical quantity but their expression might vary depending on which probe &
is interacting with. They are called instantaneous observables in [BJM2]. A typical example
is that of energy flux observables, see Section

If in particular A(j) = A, i.e. one considers a fixed observable, then (3.4]) indeed traduces
the ergodicity of the random RIS.

Notation. Throughout the paper when assumptions, results or identities are formulated for
both the cyclic and random situation we will often use the symbol g which will stand for either
cy in the cyclic case or ra in the random case.

3.3 Assumptions

In this section we formulate the various assumptions that will be used in the paper.

3.3.1 Temperatures and thermal forces

The first assumption concerns the initial states of the probes. We will assume that they are
initially in thermal equilibrium. Namely,

e*ﬁszj

Assumption (KMS). For any1<j <M, pg, = —————~
Tr <efﬁjH5j)

for some B;.
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From now on, we will always suppose Assumption holds.

Fix some Syt > 0. If (5 := Bres — B then ¢ = (¢1,¢2, - - ., () denotes the vector of thermal
forces. In the sequel, for any quantity A depending on ¢, we will write A when we need to
stress its dependence on ¢, and only A otherwise. When all the temperatures are equal (but
not necessarily to Bref) ie. ¢ =1(¢,...,¢), we will write A¢ instead of Ag.

Note that &; depends only on ¢;. Hence we may write Lj¢ = Ljc., pe; ¢ = Pg; (i

3.3.2 Ergodicity

The next assumption concerns spectral properties of the reduced dynamics maps Ly ¢, § = cy
or ra, and the large time behaviour of S (recall Proposition [2.2]).

Assumption (ERY). There exists { € RM such that Ly is primitive.
Proposition 3.2. Suppose assumption holds. Then

1. For any ¢ € RM, Ly ¢ is primitive. As a consequence, for any ¢ € RM and any p (not

necessarily a state), lim L{.(p) = Tr(p)pi ¢ where pi ¢ denotes the unique invariant
n—o " ) )

faithful state of Ly .
2. pt_ihc is infinitely differentiable w.r.t. ¢ € RM.

Proof. 1. Let \ji, ¢jx denote the eigenvalues and eigenvectors of Hg, so that He, = Z Nkl @i )@k -

k
Then it follows from (2.2)) that

e ik (Bres—C;) .
Lic () = 2 Vi 0 Vi
k! G

where Vi = <<pjk/, e it <pjk> does not depend on . It follows immediately that the maps
Ly ¢ have Kraus decomposition of the form Ly ¢ = Z 1i(¢Q)VipV;* where the V; do not depend

on ¢ and with f;(¢) > 0. For any ¢, ¢’ the maps Ly, 4 and Ly s therefore have the same Kraus
decomposition up to positive scalar factors which proves 1. (recall Definition

2. It follows from 1. and Proposition 2.1] that 1 is an isolated simple eigenvalue for any ¢
so the result follows by regular perturbation theory [Kal. O

Finally, we have the following result which shows that it suffices to have information on
one of the probes to get information on the entire non-equilibrium RIS.

Proposition 3.3. Let { e RM. If Lj¢; is primitive for some 1 < j < M then holds
for § = ra, and if moreover L; . is positivity improving then (-) holds fort = cy.

The proof follows directly from Lemma [3.4 below in the cyclic case and from Theorem
in the random case.

Lemma 3.4. If p is positive definite then so is Lj(p). As a consequence, if there exists
1<j <M such that Lj, is positivity improving, then so is Ly ¢.
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Proof. If p is positive definite so is pg; and hence p ® pg; as well. Thus for any non-negative
and non-zero A one has

Tr (£5(p) A) = Tx (p® pe; x U A® 1) > 0,

so that L;(p) is indeed positive definite. O

3.3.3 Time-reversal

The next assumption concerns time-reversal invariance. A time reversal of a quantum system
(H, H) is an antiunitary involution 6§ on H such that 6H = H6. Given such a 6 we denote
by O the antilinear #-automorphism acting on B(H) as ©(X) = §X6. Note in particular that
one has O(e™*) = ¢ for all t € R, or in an equivalent way if v;(X) := e Xe™"*H is the
Heisenberg evolution of an observable X then

Ooy o0 =, VteR (3.5)

In open systems one usually further specifies the structure of . Namely we assume that we
are given time reversals s and 0¢ associated to (Hs, Hs) and (Hg, He) respectively and such
that s ® sV = Vs ® 0s where V' is the interacting operator. Then 6 = s ® 0¢ is a time
reversal for the coupled system (Hs ® Hg, Hs + He + V).

A state p is then called time-reversal invariant for 6 if ©(p) = p which is equivalent
to p(O©(X)) = p(X*) for all X € B(H), and in particular p(©(X)) = p(X) when X is an
observable hence self-adjoint. Finally, a quantum system (#, H, p) is called time-reversal
invariant iff there exists a time reversal 6 on (H, H) such that p is time-reversal invariant for
6. We consider the following assumption.

Assumption (TRI). There exist antiunitary involutions 6 and (0g;)1<j<m acting on Hs
and (Hé‘j)lsjsM such that 0Hgs = Hg#, ngng = ngﬂgj and 9@953.‘/} = Vj@@@gj..

Since the pg; are KMS states (TRI)) guarantees that all the probes (He,, He,, pe;) are time-
reversal invariant systems. We shall come back to time-reversal invariance in Section

3.4 The Non-Entanglement condition

There is a last assumption, see Assumption (NE) on p which will play an important role
in our paper and which is very specific to RIS. The purpose of this section is first to explain
its origin and then to derive some of its consequences.

3.4.1 The Non-Entanglement condition: a signature of equilibrium

One of our goal is to understand linear response theory for RIS, which means how does the
system respond to a small perturbation from equilibrium. It is therefore important to specify
what do we mean by equilibrium. In this perspective the most ideal situation is certainly
that of a single type of probes, i.e. M = 1, all initially at the same inverse temperature j3.
One of the usual features of equilibrium is that it is characterized by the vanishing of entropy
production. During its interaction with a single probe £ the entropy production of the system
is given by , and if the system is initially in an invariant state p we simply have

o=FEnt(U x p@pe x U*| p® pg)
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which vanishes iff U x p® pe x U* = p® pge. It is thus natural to require that for each species
of probes, and whatever is their initial temperature, there exists an invariant state p; such
that the triple (Uj, pj, pg;) satisfies the Non-Entanglement condition .

Consider now the general framework of Section[3.2]and more precisely the random situation
of Section When Assumption holds the entropy production in the system is given
by, see Proposition and also [BJM2, [BJM3],

M
— 2 Bip(®)), (3.6)
j=1

1
where ®; = —fTrpgj (UjHe,Uj — Hg,), T = 11 + -+ Tpr, denotes the energy flux observable

associated to the j-th type of probe (see Section for more details about these ®;). A
natural notion of equilibrium is that it leads to a vanishing of entropy production. The
following proposition gives a simple characterization in terms of the individual probes.

Proposition 3.5. If Assumption m holds then o, = 0 if and only if
Uj x p ®pe; x Uf = p* @pe;, Vjed{l,..., M}, (3.7)

i.e. the states pi* ® pg; are invariant states of the joint systems S + &; so that in particular
Li(pht) = pt® for all j. In other words pi* is a common invariant state for all the probes and
the triples (Uj, %, pg;) all satisfy the Non-Entanglement condition .

Proof. One direction is obvious. Namely, if (3.7]) holds for any j one easily computes

P (®5) = _TTI [P1* ® pe,; (U} He, Uj — He,)] = 0,

i.e. all the steady fluxes vanish, hence o, Z Bipt?
Suppose now that o, = 0. Using we have for all je{l,...,M}
Ent(£;(%)) — Ent(p"?)
— Bnt(Us x o1 @ pe, x US| £5(02) ® pe; ) — 65T ( (0 ® pe, ) (U He, Uy — H,))
— Ent(Uj x o @ pe, % UF | £5(07) @ pe, ) + BiTol(@)).
Summing these identities over j and using we get

ZEnt — Ent(p"® ZEnt(U X PO ® pe, x U | L; (o )@pgj.). (3.8)
7j=1
Relative entropies are non-negative quantities so that the right-hand side is non-negative. But
the left-hand side is non-positive. Indeed von Neumann entropy is strictly concave so that,
using L,q(p"¢) = p'¢, we have

— Ent(p"?)

”Mi

M
( DL ) Ent(p7%) = Ent (L, (0%)) — Ent(p7%) =0,

Jj=1
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with equality iff all the £;(p"*) are equal. This proves that both sides of vanish.

As a consequence all the £;(p’*) are equal and, because L,,(p7*) = p7?, they have to be
equal to p'?, i.e. p'\* is a common invariant state for all the probes. Moreover since all the
terms on the right-hand side of are non-negative they all vanish, i.e.

Ent (Ujx pf'®pe,; x U | Li (01" )®pg;) =0 = Ujxpii®pe, xUj = Li(p)®@pe; = p'®pe;,
that is the triples (Uj, p7%, ,Ogj) satisfy the Non-Entanglement condition 1’ ]

The above proposition refers only to the vanishing of entropy production. If we want to
consider the case where all the temperatures are equal as an equilibrium situation, whatever
is this temperature, this immediately leads to the following

Assumption (NE). There exists a function R 3 ( — p, ¢ such that, for any je {1,..., M}
and € R, the triple (Uj,p+7g,p5j7g) satisfies the Non-Entanglement condition

Uj X p1c ® peyc X Uf = pic ® pe; ¢

Remark 3.3. If moreover Assumption (ER4g|) holds this obviously implies that, when all the
temperatures are equal, the unique invariant states in the cyclic and random cases coincide

with py ¢, i.e. pfg =P =Pt

Assumption (NE) may look quite restrictive at first sight. Indeed it requires that for any
probe and at any temperature there is a non-entangled invariant state, and that this invariant
state depends only on the temperature and not on the probe itself. Proposition however
shows that this is the natural condition if one wants to consider equal temperatures as an
equilibrium situation, in the sense of vanishing of entropy production. Since linear response
theory deals with a situation close to equilibrium, if Assumption does not hold one
should therefore also take into account a departure from this assumption. It is however not
clear how to quantify this or, said differently, what is the natural quantity one can associate
to a generic RIS and the vanishing of which would correspond to the fulfilment of Assumption
. In particular, if Assumption fails, the Green-Kubo formulas and do
not hold, at least in the form given in the present paper, and Onsager reciprocity relations
are not valid.

On the other hand the large deviation principle for entropy production and the fluctuation
relation are not directly related to any equilibrium situation. One can therefore expect that
they hold true even without Assumption and this is indeed the case, see and
Theorem [5.8 However, when all temperatures are equal the vanishing of entropy production
is also equivalent to energy conservation, see . Therefore, if Assumption does not
hold this proves that, at least at equilibrium, energy conservation fails (which explains why
we need it in Proposition. As we already mentioned in the introduction one should not be
surprised. This comes from the fact that the RIS hamiltonian is time-dependent. As a
consequence the translation symmetry , which is directly related to energy conservation,
also fails if Assumption does not hold.

In the rest of this section we derive two consequences of this Non-Entanglement assumption
which will play an important role in our analysis.
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3.4.2 Effective hamiltonian

The first consequence is the existence of a conserved quantity for the £;’s and which plays
the role of an effective hamiltonian. This is directly related to the conservation of the entropy

observable (2.7)), see the end of Section

Proposition 3.6. Suppose (ERf) and (NE|) hold and let Hg = —log (pi%“) so that p4 o =

e PretHs  Then for any ¢ € R the state P+, 15 a Gibbs state at inverse temperature 8 = Bref —C

o5
————~ B = Bret — €.
Tr (e*ﬁH‘S)
Moreover, for any j, the observable Hg + Hg, is a conserved quantity of the interacting
dynamics, namely

for the effective hamiltonian Hg, i.e. py ¢ =

U (Hs®@1+1® He,) U; = Hs ® 1 + 1® He,. (3.9)

Proof. Let ¢ € R and = Brer — . Assumption (ERf) together with Proposition imply
that py o is positive definite. Hence HY is well defined and Assumption (NE|) guarantees

that, for any 1 < k < M, [pﬁo ®e*5refH5k,Uk] = 0. So

B
[pf-i%f ®e6H5k,Uk] - [e—ﬁHfs @efﬁH‘gk,Uk] =0, Vp. (3.10)

—BH..
e K
Hence ————— is an invariant state of Ly ¢ for any k and hence of Ly ¢. Since the latter
Tr (e*BHS>
admits only one invariant state it coincides with p, ¢.

Finally, (3.9) is a direct consequence of (3.10)). O

Remark 3.4. Note that the effective hamiltonian H is intrinsic to the system and that chang-
ing the reference temperature S.ef only amounts to an irrelevant shift by a constant.

We also note the following lemma which can be seen as a sort of gauge invariance and
whose proof is a straightforward computation left to the reader.

Lemma 3.7. If Assumptions and hold and Hy is as in Proposition then
for any state p, j € {1,...,M} and t € R one has

L (e—itH’s peitHjS) — oTitH5 £(p) eitHs.
Remark 3.5. Of course one has the same property in the Heisenberg picture,
c (eitHg Xe—itH};) — eitHs 3(X)e s (3.11)

In particular, taking X = Hg, we get that [L}(Hg), Hg] = 0 for all j.
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3.4.3 Non-entanglement, time-reversal invariance and detailed balance

The second consequence of Assumption is related to time-reversal invariance. Assump-
tion is written in terms of the full interacting dynamics U;. However the central
objects in RIS are the reduced dynamics maps £;. It is therefore natural, and important, to
understand what are the consequences of Assumption on them.

Definition 3.1. Let £ be a CPTP map and p an invariant state of L. The pair (L, p) is
said to satisfied the standard quantum detailed balance (SQDB) condition with respect to the
time-reversal © if ©(p) = p and O o L* 0 © = L*P where L*P denotes the p adjoint of L*, i.e.
its adjoint with respect to the inner product (A, B), := Tr (pA*B).

Remark 3.6. The above definition can be traced back to [Ag], see also [FU, Ma]. We mention
that several other notions of quantum detailed balance which do not make reference to any
time-reversal operator exist in the literature. The probably most common one is due to
Kossakowski, Frigerio, Gorini and Verri [KEGV]. It is called GNS quantum detailed balance
and it holds iff £* is p self-adjoint, i.e. L£* = L*. To enhance its dependence on the
time-reversal operation the notion of quantum detailed balance as given in Definition [3.1] is
sometimes called SQDB — © condition in the literature, see e.g. [FR].

Remark 3.7. In [JPW] Definition [3.1]is called time-reversal invariance. Indeed, if (H, H, p) is
a quantum system with p an invariant state and v;(X) = e X e~ denotes the Heisenberg
evolution, it is easy to see that for all ¢t € R the p adjoint v/ of v, is y_; so that amounts
to @000 = +f. In the markovian description of open systems one then simply replaces the
unitary evolution +; by the markovian one £* and the relation © o £L* 0 ©® = L** can therefore
also be understood as a signature of time-reversal invariance.

The following proposition shows that the Non-Entanglement condition allows one to make
the connection between our Assumption (TRI) and Definition

Proposition 3.8. Let 6 and Og be time reversals for the quantum systems (Hs,Hs) and
(He, He) respectively and V € B(Hs ® He) such that s ® 0gV = Vs ® 0g. Let 7 > 0
and pg be such that (He, Hg, pg) is time-reversal invariant, and let L be given by . If
L is primitive and its (unique) invariant state p is such that the triple (U, p, ps), U = e~
with H = Hs + He + V', satisfies the Non-Entanglement condition (@, then the pair (L, p)
satisfies the SQDB condition.

In our framework of RIS we thus immediately get

Corollary 3.9. If Assumptions (ER), and hold then for any ( € R and any j
the pair (Lj¢, p+.c) satisfies SQDB in the sense that ©(py ) = p4¢ and

©o Ll 00 =L (3.12)

Proof. Since the indices 5 and ¢ do not play any role we omit them to alleviate the notation.
For X € B(He¢) let ©g(X) := 0 X 0. One immediately gets O ® O¢(U) = U* so that

U O(p)®ps U* = U (000¢) (p@ps) U* = (9®@5)(U* PRpe U) = (0®0¢) (p®pe) = O(p)®ps,

where we have used successively O¢(pg) = pg, OR0O¢(U) = U*, (2.6) and Og(pg) = ps again.
Hence O(p) is an invariant state of L.



3.5 A toy example 17

We have proven that O(p) is an invariant state of £; for all j so ©(p) is an invariant
state of L., and L,,. Since the latter are primitive by Assumption (ERJ) this proves that

O(p) = p.
On the other hand, for any A, B € B(Hs) we have

Te(pL*(4)*B) = Tr(pA™L*(B)
(pA*®pe xU* x B1 xU)
(Bp®ps xU x A*@1xU")
(O(Bp) ® Og(ps) x U* x O(A*) @1 x U)
_ Tr(O(Bp)L* (O(A))
= Tr(Bp(©@oL*0B(A)"),

=i

which proves that © o L* 0 © = L*P. Here we have used the definition of £*# in line 1, of L*
in line 2, cyclicity of the trace and in line 3, antilinearity of ©/0¢ in line 4, O¢(pg) = pe
and definition of £* in line 5, and finally in line 6 that £* is completely positive so that
L(X*) = (L*(X))*. O

Remark 3.8. Note that for cyclic RIS Assumption makes the RIS time-reversal invari-
ant only for the duration of the joint evolution with each individual probe, that is only locally
in time. Indeed, the time-reversal operator © does not change the order of the interactions.
This lack of global time-reversal invariance will however be resolved in the random model.

Remark 3.9. If (ERf), (TRI) and (NE) hold it also follows from (3.9) that the effective
hamiltonian HY is invariant under time reversal, i.e. ©(Hg) = Hs.

3.5 A toy example

Suppose that ’HS and Hg are copies of C2, Hs = Ea*a, He = Eyb*b, and the interaction V has
the form V = 3 (a*®b+a®b*). Here a/a*, b/b* are the usual annihilation/creation operators
01
00
of § and & respectively, and the interaction consists in an exchange of excitation between
S and €. This model can be seen as a toy version of the Jaynes-Cummings hamiltonian
describing the interaction between one mode of a quantized electro-magnetic field in a cavity
and a two-level atom, see e.g. [CDG], and the corresponding RIS as a toy version of the
one-atom maser model studied in [BP, Bru|. The spectral analysis and ergodic properties of
this toy model can be found in [BJM3].

One easily sees that the total number operator Ns @ 1+ 1® Ne = a*a @ 1+ 1 ® b*b is

. . —BH ~BH
a conserved quantity. As a consequence, if pg = 'I‘r?e_ifﬂig)’ Hg = Egb*b, then p = #Mffs),

on Hs and Hg respectively, i.e. a =b = ( ) FE and Ej denote the excited energy levels

H% = EgNg, is an invariant state and the triple (e_”H s P pg) satisfies condition 1)

Consider now the RIS where the probes &£; are copies of £ with possibly different tem-
peratures. We have just seen that Assumption (NE|) indeed holds and leads to the effective
hamiltonian Hg = EgNs. Assumption (TRI)) is then obviously satisfied with ¢ and g, the
complex conjugation operations in the canonical bases of C2.
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Finally let v; := \/ (E — Ey)? + )\?. A simple calculation shows that if v;7; is not a multiple
-8 H.

of 27 then L; is primitive and that its unique invariant state is p4(¢;) := Te_iﬁ‘;‘%) (see e.g.
rie “J
[BIM3] for more details). One thus infers that, if at least one of the v;7;’s is not a multiple

of 27, at equilibrium the maps L., and L,, are primitive as well so that (ERg|) holds.

Remark 3.10. It is easy to see that the true one-atom maser model based on the Jaynes-
Cummings hamiltonian also satisfies Assumptions and . Its ergodic properties
are however much more delicate to study (here S is equivalent to a harmonic oscillator, in
particular Hs has infinite dimension) and even the bare question of return to equilibrium,
that is when all the probes are initially at the same temperature, turned out to be a difficult
problem [BP Brul.

4 Linear response of energy fluxes and entropy production

4.1 Energy flux observables

The energy flux observables describe the energy fluxes that get out of the reservoirs R;, as
they are seen by the small system S. Moreover we have to take into account the discrete-time
nature of the RIS dynamics to define these fluxes. In other words we choose to study averaged
fluxes, averaged over the duration of one interaction, instead of instantaneous ones.

Clearly the reservoir R; can exchange energy only when it interacts with S. Moreover the
typical time scale of the non-equilibrium RIS is T' = 7 + - - - + 7y where we recall that 7; is
the duration of the interaction with probe &;. This leads to the following (see Section [2.2)).

Definition 4.1. The energy flux observable associated to R; is

1
®; 1=~ Trp (UF He, Uy — He,).

In the cyclic framework it will be convenient to also use a slightly different, but closely
related, flux observable. If S is in the state p, e.g. the steady state pi ¢ (see Remark ,
at the beginning of a cycle, i.e. before it interacts with Ri, then at the beginning of its
interaction with R; it is in the state £;_1 0--- 0 Ly(p). Hence the corresponding expectation
value of the flux observable is

<(I)j> =Tr (ﬁj—l O---0 ﬁl(p) q)]) .
It is thus natural to introduce

@;y = LioL5o---0L; (D)), (4.1)

so that (®;) = Tr (p <I>§y) . We shall call ®7¥ the cyclic flux observable associated to R;. It is

easy to see that one also has

1
Y = — = Try,, (U2 He, Uy — He,),

which is the mean energy variation observable in the reservoir R; during the entire cycle.
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Remark 4.1. If we compare the definitions of ®; and <I>§y we can see that the latter contains
a supplementary information which is the order of the interactions in a cyclic RIS. Taking
two distinct definitions allows us to obtain Green-Kubo formulas which are similar in both
the cyclic and random situations, see (4.14]), (4.15) and (4.17]).

Remark 4.2. Note that the flux observables depend on the thermodynamic parameters but
that @7 depend on (i, (2, ..., (; whereas ®; depends only on (;.

Notation. In the sequel the various results will often have a similar form when written in
terms of <I>§y in the cyclic case and of ®; in the random case. When we will write @5, f=cy
or ra, the notation o will therefore stand for ®;.

Time reversal plays an important role in linear response theory and the derivation of Green-
Kubo formula and Onsager relations. Since we consider here averaged flux observables we
need to consider also what we call the reversed-time flux observables.

Definition 4.2. The reversed-time flux observable associated to R; is

1 7'Tv .
(Pj,rev = TTrpgj (UngjU;-k — ng), U] =t JHJ'

Accordingly the cyclic reversed-time flux observable associated to R; is

1
(I);?rev = £T\4,rev OO £;+1,rev(q)j,reV) = TTrpcy (UcyH&c Uc*y - Hgk)? (42)

where Lj ey 5 the reduced dynamics map associated to a time-reversed interaction, i.e.
£j,rev(p) = Tr'ng (eiTjij &® PE; e_iTjHj) .
Remark 4.3. If (ERf) and (NEJ|) hold then for any j = 1,..., M we actually have

* .
Lhee =L, (4.3)
the p, ¢;-adjoint of L7, where we recall that p; ¢ is the global invariant state as given in
Assumption . The proof is very similar to the one of and is left to the reader.
This is of course related to the fact that in the Heisenberg picture the p adjoint of the dynamics
(1) = etH .7t jg ~ 4 see Remark Note also that if Assumption (TRI) holds it follows
directly from the definition of £; ey that

Ej,rev =0o ﬁj 9} @, (4.4)

i.e. Lj ey is the time-reversal of £; which is in agreement with (3.12]).

Remark 4.4. 1) The sign discrepancy in the definitions of ®; and ®; ey takes into account
the fact that we have reversed the time. Assume for simplicity that all the interaction times
7j are equal to 7. In the limit 7 — 0 of instantaneous interactions it is easy to see that the
flux observables ®; and ®; ., both coincide with

. 1 )
q)}nst — MTrpgj (—Z[Hj,ng]) .
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2) When (TRI) holds the fluxes ®; and ®; ey satisfy the relation
q)j,rev = -0 (q)]) : (45)

In the limit of instantaneous interactions one retrieves the usual relation @ijnSt = -0 (<I>ijnSt),
i.e. flux observables are odd with respect to time reversal.

3) In the cyclic case, one can notice that @;yrev corresponds to a total time-reversal, where

the order of the interactions is reversed as well (compare (4.1]) and (4.2)).

When (ERf) and (NE) hold then Hg + Hg, is a conserved quantity of the interacting
system S + &; where we recall that Hg is the effective hamiltonian, see Section Hence
®; is naturally the flux observable associated to Hg. Namely we have

Proposition 4.1. Suppose and @ hold. Then
1
@) = (L5 (HE) - HE), (46)
i.e. ®; is the flux corresponding to the effective energy Hg. Similarly one has

1
Djrev = (Lo (HE) = HE), (47)

j,rev

Proof. Using (3.9) we have U} Hg,Uj — Hg; = Hg — U HsU; hence
1
T

where we have used that Hg € B(Hs) and the definition of £;. This proves (4.6
Then (4.7) follows from (|4.6]) using (4.3, (4.5 and Remark O

1
(I)j = Trﬂsj (UJ*HIS'U] - HZS') = T(‘C;(Hg) - HIS')v

4.2 Steady fluxes, energy conservation and entropy production

The first central concepts in non-equilibrium systems are energy conservation (1st law) and the
relation between entropy production and steady fluxes (entropy balance equation), together
with non-negativity of entropy production.

Proposition 4.2. [1st law] If and (NE|) hold we have
M
Z p&(@?) =0, #=cyorra. (4.8)
j=1

Remark 4.5. In the cyclic framework, p¥ is the asymptotic state at the beginning of a cycle
and not at the beginning of the interaction between S and the j-th reservoir (which is thus
Li_10--0Ly(p})). So the steady expectation value of the energy flux out of R; is indeed
oV (Lo Lo 0 L)1 (@)) = p ().

Proof. Using (4.1)), (4.6) and Ly (pY¥) = p%’ we have

M M
SUAU@Y) = T V(Lo o L3 (LH(HE) — HE)) = Tp¥ (L3,(Hg) — HS) =0.
j=1 J=1
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o 1 :
Similarly, recall £L,, = M(ﬁl + -+ L), so that using 1) and Lq(p") = pi* we get

M M
S (@) =T S ol (L3 (Hy) — HS) = TMgT® (L5, (H) — H5) = 0.
j=1 j=1

O

Remark 4.6. Of course, as expected and mentioned at the beginning of the proof of Proposition
when all the temperatures are equal each steady flux vanishes, i.e. pﬁ(@g) = 0 for all j.

We now turn to entropy production. Recall that the entropy production during an in-
teraction between S and a system & is given by . For a non-equilibrium RIS, and if
J = (Jn)nen* describes the sequence of interactions (see Section , the entropy production
during the n'" interaction is thus

on(g) == Ent(Uj, x pn_1(3) ® pe,, x U | pn(3) ® pe;,, ),

where p,(j) = Lj, o--- 0 Lj (p) denotes the state of S after n interactions. Using (2.3) we
have the following entropy balance equation for the NN first interactions

Z = Ent(pn(5)) — Ent(p TZﬁjnTr jn1 00 Ly(p) x ®5) . (4.9)

As a consequence in the random, resp. cyclic, cases we can define the entropy production
associated to the N first interactions, resp. cycles, by

NM
ora(j, N) := Z ), resp. ogy(N) = 2 on(J)- (4.10)
n=1 n=1
For cyclic interactions (4.9) becomes

N
oey(N) = Ent (LY (p)) — Ent(p Z (zn 1 )xcp;?y). (4.11)

||M§

Definition 4.3. We define the asymptotic entropy production rate of a cyclic or random
Repeated Interaction System by

+ .1 Ucy(N) N Um(jaN)
cy N1—1>+oo NT Ura(J)'_ lim  —=—

o
N—+o0 N% '

provided the limits exist.
We then have the following entropy balance result.

Proposition 4.3. Assume holds. Then the asymptotic entropy productions exist and
we moreover have

M
Z BipY(®F) and ol (§) = = ) BiplH(®;) P —a.s.
=1
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Proof. Since Hs has finite dimension the von Neumann entropies Ent (5%(;))) and Ent (pn (7))
are uniformly bounded hence give no contribution to the asymptotic entropy production. In
the cyclic case the result thus follows directly from and Proposition

In the random case, using , Proposition and Theorem with A(j) := 5;®; we
get that o,f () indeed exists P-almost surely and is given by

M
07, (3) = —Mp’* (Ep(8D)) = — . Bipy (2;) .
j=1

Remark 4.7. In the cyclic case we have divided by T which is the total duration of a cycle
while in the random case we have divided by % which is the mean duration of an interaction,
in agreement with (4.10). These different scalings will appear regularly in the sequel.

In the random case we could have equivalently divided by the total duration Zivzl Tjn
instead of V % because P-almost surely % Zgzl Tjn — % by the strong law of large numbers.

4.3 Green-Kubo formula and Onsager relations

The next step is linear response theory which is concerned with the response of the system to
a small perturbation from equilibrium. In this section we derive the Green-Kubo fluctuation-
dissipation formula which relates the transport coefficients of the system out of equilibrium
to flux-flux correlations at equilibrium. Linear response theory will be completed in Section
by the Central Limit, aka Fluctuation-Dissipation, Theorem As we have mentioned
at the end of Section and since they make reference to equilibrium, our results require
that the Non-Entanglement Assumption holds.

In order to state the Green-Kubo formula we first recall the notion of dissipation function.
Recall that the characteristic time of the system is 7T'.

Definition 4.4. The dissipation function associated to the reservoir R; is
1
Di(X,Y) := 7 (L5(X*Y) = LE(X*)Y = X*LI(Y) + X*Y). (4.12)

1
If the Kraus decomposition of £; is given by 1} it is easy to see that D;(X,Y) = T Z Vi, X]*[Vi, Y.
el
1
In particular D;j(X, X) = T Z [Vi, X]*[Vi, X] is non-negative and is zero only if X commutes
i€l
with all the V;’s.
Remark 4.8. The dissipation function has been introduced in [Li] for continuous-time quantum
dynamical semigroups (etL) o as the sesquilinear map D acting on B (Hs) and defined by

D(X,Y) = L(X*Y) — L(X*)Y — X*L(Y).

Here L is the Lindblad generator of a semigroup of unital completely positive maps, i.e.
corresponding to the Heisenberg picture. If we fix some characteristic time 7', according to
(4.12) the dissipation function associated to the unital completely positive map e is

Dr(X,Y) := % (™ (X*Y) — "L (XY — X*eTL(Y) + X*Y)

and it is easy to see that %imo Dr(X,Y)=D(X,Y).
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Theorem 4.4 (GK formula and Onsager relations). Suppose (ERf|) and (NE] (-) hold.
1) The maps ¢ — pJr o ¢— Pj¢ and ¢ — <I> y are infinitely differentiable. The quantities

Lﬁk = ‘7@0&;(@?0[@0’ t =cy orra, (4.13)

are called the kinetic coefficients.
2) We have the following Green-Kubo formulas

+00
Ly = 1Y ps (E,’;H 0w o Lo L o LT o0 LE (D)) x q),g,rev) (4.14)
n=0
1
Jr5]’>k Tp+ (ﬁiﬂ Or-0 5;—1(‘133') x ‘I’k,rev> + §5jkp+ (Dj(Hfsv HZS))»
e - D) Prrev) + 5 H, H: 4.15
ik P+ ra( )P rev) ikp+(Dj(Hg, Hg)), (4.15)

where all the quantz’tz’es on the right-hand side are calculated at equilibrium ¢ = 0, e.g. ps+
stands for py = p?y = p%y (see Remark
3) If moreover Assumptzon (-) holds then the following analogs of the Onsager reciprocity
relations are satisfied:

L;Z = ngy and L = L3, (4.16)

where L};?y denotes the kinetic coefficient associated to the cyclic RIS in which we reverse the
order of the interactions, i.e. L™ = L1 0---0Ly;. In the specific case M = 2, we retrieve
the usual Onsager reciprocity relations L]k = ZZJ/ for the cyclic case too.

Let us comment on identities (4.14) and (4.15).

i) The sum in describes the flux-flux correlation at equilibrium between reservoirs
Rj and Ry. Since R; interacts only once during each cycle, using -, it is easy to see
that this sum can actually be written in terms of L., leading to the more condensed form

+00

Zp+<cz+lo...og;;40cj;oqo...o[,;.;l(cp x@km) Zp+ LE@Y)BY ). (4.17)
n=0

ii) The sum takes into account only the correlations when at least one cycle has
been achieved. The second term in the right-hand side of then takes into account the
contribution of the flux-flux correlation between reservoirs Ry, and R; if less than a cycle has
already occured, which can happen only if j > k.

iii) In both (4.14)) and (4.15)) the ¢;; term takes into account the self-correlation of reservoir
R;j with itself during its first interaction with S. It is non-negative and vanishes only if S is not
effectively coupled to &; in the following sense. If £; = >, V; - V* then p,(D;j(Hs, Hg)) = 0
iff Dj(HS, Hg) = 0 (the latter is non-negative and p is positive definite) which in turn holds
iff [Vi, Hg] = 0 for all . But this implies that L3 (Hg) = >, V;i*HgV; = >, V*V;Hg = H
because L;’-‘ is unital, and hence ®; = 0 by : whatever are the various temperatures and
whatever is the state of S there is no flux between S and R;. We mention that a similar term
appears in [JPW] in the framework of quantum dynamical semigroups.

iv) Finally the prefactors T and % represent the “time-step”. In the cyclic case, L,

describes the evolution during a cycle while £,, is associated only to a time-step %
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Remark 4.9. The Onsager reciprocity relations are satisfied only for the random and the
M = 2 cyclic cases. In the M > 2 cyclic case Assumption reverses the time only
locally, leaving the order of the interactions unchanged (see Remark . This explains why
L7} has to be compared to the kinetic coefficient L7’ of the reversed-order cyclic model.
This is similar to what happens when time reversal invariance is broken by the presence of a
magnetic field and one has to replace Onsager relations by Onsager-Casimir relations.

Notation In the rest of the paper, any quantity with a subscript/superscript rcy should be
understood as the quantity associated to the reversed-order cyclic RIS in which S interacts
first with Rps, then Rps_1,... For example Loy = L10---0 Ly, @;Cy = L300 L (D))

Of course, any result which holds true for the cyclic RIS also holds for the reversed cyclic one.

5 Entropic fluctuation

The purpose of this section is to go beyond Proposition and to study the statistical
fluctuations of the entropy fluxes 5;®; going out the reservoirs (R;)i<j<m-

5.1 Full counting statistics

To study the entropy fluctuation we consider the statistics of the increments of the entropy
observable as given by a two time measurement protocol, also called Full Couting Statistics
(FCS), and which we briefly recall for the convenience of the reader. This approach goes
back to [Ku] and, independently, [Ta]. It has more recently been used in e.g. [JOPP, BDBP,
BJPPP|, I BPPl, BPRI, see also the review [EHM].

Consider a quantum system S with underlying finite dimensional Hilbert space H and
let A be the observable of interest. Suppose the system is in the state p when we perform a
first measurement of A. The possible outcomes of the measurement are eigenvalues of A and
a € sp(A) is observed with probability

P(A = a) = Tr(I1,(A)plL,(4))

where TI,(A) is the spectral projector of A associated to the eigenvalue a. After this first

I, (A)pl1u(A)
Te(IL, (A)pILa(A))
Subsequently, if the evolution of the system during some time interval of length 7 is described
by some unitary operator U, a second measurement of A at time 7 gives the value o’ € sp(A)
with probability

measurement, given that the outcome is a, the state of the system becomes

Tr (I (A)UTL(A) I, (A) U1 (A))
To(TT, (A)p)

The joint probability distribution of the two measurements is thus given by

P(a,a’) = Tr(Ily (A) Ul (A)pIla (A)U* T, (A)),
and the statistics of the increment AA of A as given by this protocol is therefore given by
P(AA = 6) = > Tr (Il (A)UTL,(A)pll, (A) UL, (A)).

a,a’esp(A)xsp(A)
a’'—a=6
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Note that if A commutes with the initial state p we simply have

P(AA = 6) = > Tr (I (A)UTL, (A)pU*) (5.1)
a,a’esp/)(A) ><§sp(A)

so that the expectation of AA as given by this two-measurement protocol is

Ep(AA) = Z (a' —a) Tr (Hy (A)UIL(A)pU*) = Tr(p(U*AU — A)), (5.2)
a,a’esp(A) xsp(A)

and coincides with the expectation value of the flux observable U* AU — A associated to A.
Note also that, although it does not appear in the notation, the probability law P depends
on the initial state p of the system when the first measurement is performed.

In this section, we are interested in the full statistics of the increment of entropy observables
of the probes, where the entropy observables are defined in Section Since probes are
initially in thermal equilibrium, up to an irrelevant constant the entropy observable of &; is
Sg; := BjHg,;. The corresponding entropy increment observable is therefore U J* Se;Uj — S¢; =
B (U ]’-“ng Uj — ng). We shall also consider the energy increment observables U;‘ng Uj — Hg;
which up to a prefactor % correspond to the flux observables considered in Section .

Let now j := (jn)nen* € {1,..., M }N* be the sequence of indices describing the sequence
of probes with which § interacts, and denote by 5}1 the n'* probe. Recall that Sj’; is a copy
of £;,. Then, according to , the probability distribution of the increment of entropy for
the n-th interaction is given by

P (ASg]nn _ g) - Y (HS/ (Sg]ﬂn> U, I, (Sg]nn> X p® pep U;;) ,
s/ —s=¢

where the sum runs over s,s’ € sp (ngr_z ) such that s’ — s = ¢, p is the state of S at the
beginning of the interaction and where we have used that the observable ngn commutes with
the “initial state” p® per .

To describe the statistics of entropy increments during the IV first interactions we introduce
some more notation. For any s := ((sn, s,))n € (R2)N* and N > 1 we define

URH(3) = Ul (SE ) % x ULy (SE) - where U7, 4)(S) i= TLu(S)UTT ().

(Sstlj\f) (8173/1)

Note that clearly U S,)(S ) is non-zero only when s, s’ € sp(S). Then the statistics of entropy
increments during the N first interactions is given by

P(ASe =aio ASen =av) = YT (Ui(5) x pily(3) x UN()).

where the sum runs over s € (R?)" such that V1 <n < N, s,,s, € 0 (ngn ) X o (ngn ) and
/

sl — 8n = Su, and where pf,(j) denotes the total initial state p® pe1 @+ ® pen .
J1 IN

n

Definition 5.1. The (random) vectors of entropy increments and energy increments after N
interactions are SN (7) := (SN, (), K, (1)), QR (3) == (QN, (). QX (4)) where

SR,(G) = D, ASen, QR.(4):=—B; "SR, ().
1sn<N
In=]
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Remark 5.1. The sign convention in the definition of Q%J_ (7) is in agreement with the one of
the flux observables ®; of Section

We obviously have the following

Proposition 5.1. The joint probability distribution of SX (j) is given by
P(SR() =) = D Tr (UR () x pins(d) x U (5)") (5.3)

where the sum runs over all 8 such that for all1 < n < N, s,,s), €0 (Sg]r_l ) X o <ngn ) and

for any j€{l,..., M} one has Z St — Sp =g withs = (s1,...,5M)-
1sn<N
In=]

In the case of cyclic RIS, in agreement with (4.11)), we shall actually consider
SR (ey) := S M (%), resp. QR (cy) := Q"M (),

the vector of entropy, resp. energy, increments associated to the cyclic RIS after N cycles.

In the random case note that randomness is now twofold: randomness due to the random
order of interactions and a “quantum” randomness due to the two time measurement protocol,
and that the latter depends on the former. Indeed as already mentioned the probability law P
of a two time measurement protocol depends on the initial state of the (entire) system, hence
on p but more importantly on the sequence j of probes (via the per. ’s). To be precise, given a
sequence j we should denote P; instead of P and then the joint probability distribution with
respect to the two alea is

P(3,8) = P(3) x Pj(s). (5:4)

5.2 Moment generating function

We will analyze the large time limit, i.e. N — o0, statistics of the entropy and energy
increments through their moment generating functions (MGF).

Definition 5.2 (Moment generating function). Let o = (au,...,an) € CM. We denote by
T?Vp(a) and rjc\?,/p(a) the respective MGF of the vectors —S% (§) and —SX (cy) at v, i.e.
: M gN (s _yM N
T?Vyp(a> — E]P’j (6 2321 GJSRJ-(])> and r]c\g{p(a) — EIP’ <€ 23:1 a]SRj(cy)> )

Note that the above MGF are defined with respect to the “quantum” alea. We have also
stressed their dependence on the initial state p of the small system. In the random RIS case
we shall also consider the MGF with respect to the two alea.

; Mo SN (s
Definition 5.3. For ae CM, let TN pla) == Ep (rfv’p(a)> =Ep (e 2= ’SRJ'(J)> .

To understand the MGF rf\,p(a), r?\?p(a) and rif (), following e.g. [JPW], BDBP]
vHG, vHG2, BPP], we consider the following deformations of the reduced dynamics maps

(Li)1<j<m-
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Definition 5.4. For a = (o, ..., an) € CM we define

a 1—o; g
LX) = gy, (1@ pg, ™ x Up x X @ py? x Uy),

and
1
clobe .o plet oo pled o plads .o Zpleds ooy pledy (5.5)

Remark 5.2. The notation ﬁj[a]* is chosen in order to be consistent with the reduced dynamics

maps L’;‘»‘. Indeed, EE-O]* = L';'-‘ and .ngo]* = L’B", f = cy or ra. Of course EE-O‘] will denote its
- L;. Note also that for any j the map Eg-a]* only depends on «;.

dual map so that £ i

The connection between the MGF and the Ega]*’s is provided by the following proposition.
For the convenience of the reader we briefly sketch its proof in Section [6.2]

Proposition 5.2. For any a € CM and N > 1 one has

rhole) = p (£57 00 L) (5:)

J1

As a consequence

cy [o]* N ra [a]* N
riv (@) = o (£57)" () and 15,00 = o (£l27) (). (5.7)
Of course the same approach can be used to study the energy increments.

Definition 5.5. Let a € CM. We denote by fg;,,p(a) and fjc\?,{p(a) the respective MGF' of the
vectors ON (§) and QX (cy) at v, i.e.

1 M AN (.a M N
N ple) = Ep (ezj_laj %, m) and fjc\?,’p(a) = Ep (eza—l%gnj (cy)> 7
as well as, in the random case, the MGF with respect to the two alea, i.e.
y M AN .
F;\%P(a) = EP <7’;‘}Vp(a)> = EP,'P (ezj_l Qj QR]- (J)) .

It follows directly from Definition [5.1] that the entropy and energy MGF satisfy the relations

o . [s] ~ o
Ap@ =, () A=k, (5) t-anra 5.9
and where @ denotes the vector %, R anm .
B Bm

Although not mentioned explicitly all the above quantities depend on the vector { =

(C1,--.,Car) of thermal forces and, as for £;, the map Lg.oé] actually only depends on (.

Proposition 5.3. If (ERH) holds then, for any ¢, € RM | the map Eigfz“]* is a primitive CP
map. We shall denote by rtc(a) > 0 its spectral radius.
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Proof. The proof is the same as the one of Proposition O

One can then relate the large N behaviour of the moment generating function to the spectral
radius of Ejga]* using Proposition

Theorem 5.4. Suppose holds.
1) For any initial state p and o, ¢ € RM one has

rg(a)z lim rﬁw(a)%. (5.9)

n—+ao

2) If holds we have the following version of the Fvans-Searles symmetry:

rgy(l —a) = rzcy(a), (1 —a) = () (5.10)
where T‘C “Y(a) is the spectral radius of ETC;C E[ ] --- 0 E[ o , the deformed reduced
dynamics map corresponding to the cyclic RIS with a reversed order and 1= (1,...,1).

3) If (@) holds we have the following translation symmetry
rg(a) = rg(a +A87Y), t=cy, ra, (5.11)
for any o, € RM X e R and where 37! = (87 ,...,B;j).

In view of 1) we will call o — rg(a) the large time moment generating function of the
entropy fluxes. Of course (5.8)) immediately leads to a similar result for energy fluxes, i.e.

AN ; 1L_4(a
rela) := nl_l}r_{_loor pla)n =1 (B) .
In particular the translation symmetry (5.11]) becomes
() = P (a + A1) (5.12)

for any o € RM and A € R. This translation symmetry (5.12)) is related to the energy
conservation (4.8]), see Remark below. As we have already mentioned at the end of
Section it is thus not surprising that we need to assume (INE) at this point.

Remark 5.3. We mention that analogous results are obtained in [AGMT) [BPP] for systems
continuously interacting with infinitely extended reservoirs. There the authors consider a two
time measurement protocol with finitely extended reservoirs, then perform a thermodynamic
limit which leads to the infinitely extended reservoirs and finally look at a large time limit.
Their analysis requires some ultra-violet condition on the coupling between the small system
S and the reservoirs to control the large time limit (this ultraviolet assumption was initially
missing in [AGMT] leaving a gap in the proof which was further corrected in [BPP]). The
situation is somehow simpler here because at finite time only finitely many probes have already
been coupled to §. Said differently the thermodynamic and large time limit are in a sense
taken simultaneously. On the other hand the RIS structure leads to a repeated two time
measurement protocol (after n interactions 2n measurements have been done) instead of a
single one.
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5.3 First moments and link with linear response theory

Our next result concerns the first and second moments of the entropy/energy increments and
makes the connection with the results presented in Section We thus suppose throughout
this section that (ERf) and (NE) hold. We also introduce the following maps which act on
B(Hs).

Definition 5.6. For any j=1,...,M let

1 c
i (X) = 7 (L5 (XHs) — LI(X)Hs), @ :=Lio-oLf jopjoLlf o oLf. (513)

Remark 5.4. If follows from (4.1) and (4.6) that ©;(1) = ®; and ¢;”(1) = @5
The maps ¢; appear naturally as the derivatives with respect to o of the deformed maps

J

E[a]*, see Lemma Of course, similarly to the flux observable ®;, the map ¢; depends on
the thermodynamical force ;. It then follows directly from (4.3]) that for any ¢ € R one has

4 X) = 7 (LX) — L5y (XHE))
so that in particular, using (4.7)), we get
@i (1) = ®jrey- (5.14)

Theorem 5.5. Suppose (ERY{|) and (NE|) hold. Then we have
1) Forallj=1,...,M,

orY (o) P or'(a) T ..
o, [a=0= B;Tp? (®}), 50 [a=0=5j 2775 (@), (5.15)
2) For all j,k=1,..., M,
a?,r.cy(a) 2 = cy cy *n cy cy cy *n cy
W[OFO = BibT Z P+ (‘Pj © [’cy (‘I’k — P+ (‘I’k ) + Sf’k oL ( P+ (‘I) )))
+5k>yﬁaﬂkT2 (5* "0 5;71 O pj o E;H 0---0 52—1(‘%))
+5J>k5;5kT2 (ﬁ* oLy 1 0pk0 £Z+1 ©--0 E;‘(—l(q)j))
+8B; 7o (Lio---o 5}'-11(73]'(1‘1(’9, Hg))) - (5.16)
and

2Tra a
L GO wk( ) Zp 5 0 L (@) — piE(D4)) + p 0 L2 (D5 — po (D))

8aké’aj
40342070 (D (H, H5). (5.17)

Remark 5.5. In the above theorem all the quantities depend on the vector ¢ of thermal forces
and all the results hold for any value of . We have not mentioned the dependence on ¢ to
make the formula not too heavy.
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Remark 5.6. The prefactors T and T2, resp. % and %, in }1 , Tesp. 1' and
l} are due to the fact that the definitions of r%(a) correspond to the variation of entropy
fluxes per interaction or cycle and not per unit time.

Remark 5.7. Of course (5.15) is in agreement with (5.2)).
Remark 5.8. As mentioned at the end of the previous section (4.8) is a direct consequence of

the translation symmetry (5.12)) combined with (5.15]).

Finally, we recall that the Green-Kubo formula (4.14))-(4.15)) can also be obtained via the
moment generating function 7(a), see e.g. [JPRL JPW]. Indeed, we infer from ([5.15) and

B3) that
62f2“(a) T (92f2y(a) 82f20y(a)

—=— o TLY
ﬁck(?aj [

= — 1, _— ——=0N= . e e— 77:Tchy.

If moreover (TRI) holds, then Evans-Searles symmetry gives for any «, ¢
fzcy(a) = fzy(ﬁrefl ¢ a)a fza(a) = fza(ﬁrefl ¢ (X),
and using translation symmetry with A = 3,.; we get
(@) = i (¢ — @), (@) = F(—C — a).

Using the chain rule we therefore have

azfgy(a)[ ) _0+82fzcy(a)[ e 82fzy(a)[ L 0°rg* (cx) e la%ga(a)[ L

0oy =0T 0G0y T Dol T 0Ckday 70T 2 dagoa, T
The above computation is summarized in the following

Proposition 5.6. If Assumptions , @ and are satisfied then

027y (a) c re . . a2,,;ra(a) 9T
oo lememo= TS+ L) = (L5 + 1), d

ra

80%80@ aakaaj a=¢=0" M gk

where in the cyclic case the second equality follows from .

Note that similarly to what happens in continuous-time quantum dynamical semigroups
[JPW], using the above proposition gives another path to derive the Green-Kubo for-
mula provided Assumption holds. However due to the lack of global time-reversal
invariance this does not allow us to retrieve even if holds. Nevertheless we have
the following relations which hold without .

Corollary 5.7. If Assumptions and @ are satisfied, then
02F2y(a)

80%60@ *

627:7"(1(0() T
oo fan¢mo= 37 (L + LiS)-

—e—o=T(LY + L%
=¢=0 ( ]k+ kj)’ 5ak5aj « M

Proof. Combining Remark Eq. (4.3) and (5.14])), and the fact that p is an invariant state
of all the L;’s, one easily gets that at equilibrium the various terms on the right-hand sides

of (5.16)-(5.17)) coincide with those in (4.14])-(4.15). O
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5.4 Fluctuation Theorem and fluctuation relation

Let eglyp(a) and ef(a) denote the cumulant generating functions of transient and large time
entropy fluxes, i.e.

1 1 _yM oSN 1
ei’p(a) = ?ﬁlogrfhp(a) = ?ﬁlog]Em <e Zjm1 JSRj(ﬁ)> , eﬁ(a) = ?ﬁlogrﬁ(a),

where 7., = T and 7,4 = %, P = P, P = P and, with a slight abuse of notation, 571%\1 (1)
stands for S§ (§) when § = ra. Let also I;(s) := sup (a.c — eﬁ(—a)) be the Fenchel-Legendre

acRM
transform of ef(—a).

Theorem 5.8. Suppose Assumption holds. Then
1) The entropy fluzes satisfy a large deviation principle with rate function Iy. Namely, for
any Borel set G < RM,

—inf I4(¢) < liminf L1og;}P’ti (Sg(ﬁ) € G> < lim sup LlogIPJtt (W € G) < —inf I4(s).
el N—+0 NTﬁ NTﬂ N—o+w NTﬁ NTﬁ ceG

(5.18)
2) ¢ — I4(s) € [0, 400] is closed convex, with compact level sets and inf I;(s) = 0.

CER]”
3) The sequence of random vectors (%) converges in probability and exponentially
T8/ NeN#*
fa’St to S+<ﬁ) = (_61pi(q)§)7 U 7_5Mpi(¢§\4)) Namely;
« ot (SR (®) _NA(e)
Ve > 0,3A(e) > 0,YN € N*, P T—SJr(ti) >e] <e . (5.19)
g

Moreover \/]1\77% (SE () —E (SR (t))) converges in distribution towards a centered Gaussian

whose covariance matriz is (Oa, O €(0)) k-
4) If Assumption holds, we have the fluctuation relations

M
Vs e RM, Iey(=6) = Lrey(S) = Ira(—6) — Irals) = Z Sjo (5.20)
j=1

where I, is the analog of 1., for the reversed-order cyclic RIS.
5) If Assumption @ holds then

M
Ve e RM, 3 371 # 0 = Iy(s) = +oo. (5.21)
j=1
M
In particular the gaussian measure p in 3) is supported on the hyperplane Z Bj_lgj = 0.
j=1

Remark 5.9. Losely speaking the large deviation principle ((5.18|) can be written

Pf (SR (§) = ¢) ~ e NTh(S),
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as N goes to +00. So equation ([5.20]) can also be translated as

P (Sg(cy) = —C) ~ efNT(§1+---+<M) and PA(Sg(J) = _C) ~ efN%(§1+---+<M)'
P (S5 (rey) = <) P(SY(7) =¢)

The latter is the original form of the fluctuation relation, see [ES| IGC].
Remark 5.10. Recall from Definition (1] that

SR () = (SR, (1), -+, SR, () = (~B1QR, (1), -, —BumOR,, (1)

so that (5.19) is of course related to Proposition

Remark 5.11. We would like to stress that except in point 5) the above theorem does not
make use of Assumption . Those results concern what happens far from equilibrium
hence there is indeed no reason that , which is related to the notion of equilibrium,
plays any role.

Concerning 5), it is related to energy conservation . As we have argued at the end of
Section this explains why Assumption is needed here.

Obviously Theorem has its analog for the energy flux variables Q% . At equilibrium,
3. in the above theorem allows us to complete the linear response theory results of Section
with a Central Limit theorem on the large time behaviour of energy fluxes at equilibrium.
Namely we have the following

Theorem 5.9 (Fluctuation-Dissipation). If Assumptions (ER|), (NE|) and (TRI)) hold, then
the sequence of random vectors \/JI\T (QR(#) —E (Q%(jj)))NeN* converges in distribution to
T

a centered Gaussian whose covariance matriz  D* is given by DS = LS + LY
k) 1<) k<M L gk ik

ra __ ra

and Djk = 2ij.

Proof. Theorem gives the convergence with Dg.k = 8§jakéﬁ(0) where éf(a) = Tlulog ().

(
The result follows using Corollary and the fact that at equilibrium 0,,;7(0) = Tﬁp&(q)g-)
0.

[

6 Proofs of the main results

6.1 Proof of Theorem [4.4]

This proof is inspired by the one given in [LS] (see also [JPW]) for open quantum systems
interacting with thermal reservoirs in the Van Hove weak coupling limit. In order to sim-
plify the notation, all the quantities without any ¢ or ¢ parameter should be understood at
equilibrium ¢ = 0.

1)-2) The differentiability of pi,(; follows from Proposition and the one of ¢§'7§ is clear
from its definition. Thus we have

Lgk = aCkPE—,C [C:()((I)g') + o+ (aqu)g',c [4:0> : (6.1)
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Since Ly ¢ (piyc> = p’i’c for any ¢ we get (1 — Ly ¢) <5Ckpi7c) = (0¢,. L1.¢) (pic), hence
N-1
(1= £8) (00 o) = 2 Lheodalaclol ), YN =1, (6.2)
n=0

Using Proposition we have A}iinoo Eé\fc ((3@/)&,() = Tr ((9@;)&@) ptfhc = 0 where we have
used that Tr(pjj ) = 1 for all ¢ so that Tr 8<kpji C) = (. Letting N — o0 in 1) we get

+7C
+o0
8<kptijc[¢:0= Z Ly 0 0¢, Ly c¢le=o(p+), and 1} becomes
n=0
+a0
= oo (20 Liclemoo £ (@9) + oy (0,98 [y)- (6.3)
n=0

Lemma 6.1. For all k and X € B(Hs) one has py (0¢,Lf ¢, [ci=0(X)) = Tpi (X Pprev) -
Proof. Using 0¢, pe,.c.. = He,pe,.co — Tr(He, pe,.c)Per,c,. and the definition of Ly, ¢, we have
P+ (06.L7 ¢ J¢u—0(X))
= Tr(1® Hg, x p4+ @ pe, U X @ WUy) — Tr (p4 @ pe,, Uy X @ WUy) x Tr(Heg,pe,)
= Tr (Ukﬂ@Hgk U]j; x p+X®p5k) —TIr (p+X) x Tr(Hgkpgk)
Tr ((Uk I1® He, Up —1® Hgk) X pyX ®P5k)

= TTr ((I)k,revarX) )

where we have used the cyclicity of the trace and Assumption (NE|) in line 2. O

Corollary 6.2. For allk =1,...,M and X € B(Hs) one has
P (06 L2y eleo(X)) = Ty (Lfsy 0o 0 Liy(X)®prer) = Ty <Xc1>;§/rev) . (64)
T
pi (P Lhuclecn(X)) = 12p1 (X (6.5)

Proof. Eq. gives 0¢, Loy cle=0= L0 0Ly 100 L ¢ [c,=00L% 41 00 Ly The first
equality in (6.4]) then follows from Lemma and the fact that py is a joint invariant state
of L;, j=1,..., M, while the second equality follows from and Definition

The second identity is immediate by definition of £, ¢. O

Inserting (6.4))-(6.5) into (6.3]) leads to the infinite sums in (4.14])-(4.15)-(4.17). It thus
remains to compute p ( ¢, @g. C[

c—0) For § = ra it follows from 4& and Lemma that

1
P+ (5<k¢’j,c[g=o> = Ok P+ (%ﬁ}ig [Cj:o(Hé)> = 0P+ (Hs®jrev)

while for § = cy, using moreover (4.1) and the fact that p; is a joint invariant state of the
L;’s, we have for k < j

P+ <aﬁkq)§7y¢ [gzo) = P+ (aCkEZ,Ck [Ck=0 OEZ—H ©---0 E;“—l(q)j))
= Tpt (E;:H O+ 0 ‘C;Ll((l)j) X ‘I’k,rev) )
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while p <6<k JC[C 0) =0 for k£ > j and

1
P+ (aCj(I);,yc [§:0> = T P+ <acj£;<,<j [CJ:O(H‘/S)> = P+ (Héq)j,rev) :

Equations (4.14])-(4.15)) finally follow because p. (HfgCI)jJev) = —p+(D;(Hs, Hs)). Indeed,

1
2

+ (H‘/S‘q)j,rev) = P+ (H/2 - HSEJ rev( ZS'))

pi (HE — 3 (HE)H)

e e e

o 0+ (HE + C3(H) — £ (Hg) Hs — Hs L3 (H))
1
= 3 P+ (Dj(Héa Hé))a
where we have used (4.7) in line 1, (4.3)) in line 2, and in line 3 that at equilibrium p, is £;

invariant and [L}(Hg), Hg] = 0, see Remark

3) We now prove the Onsager relations (4.16). We thus now assume that Assumption
(TRI)) also holds. It follows from (3.12) that © o £*, 0 © = Ej:{;+, and p4(0(X)) = p4(X*)
for any X € B(Hs) because p; is © invariant. Hence using (4.5) we get for all n

P (LI @) Prse) = pi(O(Prsen) X (LE)"(0(2))))

= oy <<I>k X (Li‘g*)”(@j,rev)>

= p+(£:g(q>k)q)j,rev)a (66)
from which L;g = LZ‘JL follows.
Similarly, let
1
Lyey := L10Lo0-- 0Ly, @;Cy —E £j+1(¢'j) and q)gcfév =7 ’frev OEJ lrev(q)j,l'ev)v

denote the reversed-order analogs of L, P Y and <I>§yrev The associated kinetic coefficients
L;zy are thus given by

Ly =T Z P+ (Lray (D7) 2L0)
1
+ 0k>j Tp+ (ﬁ?ﬁ_l ©r-0 £;+1((I)j) X (I)k,rev) + ifsjkp+ (Dj(Hév HZs));

It follows from Lemma and (4.4)-(4.5) that

OoLE, 00 =L, @(cp‘?y) — —9"%  and @( krev) _ g,

J J,rev

and the same reasoning than in shows that L%/ = L’,;;y.
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6.2 Proof of Proposition [5.2

The idea of the proof is close to the one of an analogous statement in [vHG]. The main
difference comes from the fact that we consider a double measurement with each probe while
they only have a single post-interaction measurement.

Since [Hg;, Hg, ] = [He,, Hi] = 0 for j # k, we have

Us(j) = T, (SgN) T (Sgh) x Uy -+ Uy x 1y, (Sgh) L, (SgN) ,
so that becomes
P(SR (4) = <)
= > Tr (Hst<SéZN> Iy (Sg, ) x Un -+ Un x Iy (Sg, ) - Ty (Se; )N % piog (3) x UY ---U;“V) ,
where the sum is as in . Hence
(@)

- Z e—(a1§1+"'+aM<M)IED(S7]g(j) — g)

S1yesSM

N
M e nths T (HS,N(S(JS\J(N) Ty (SE ) x Uy Uy x T, (S}, ) - .HSN(SgN)

s n=1

N (. * *
X Pyor(3) % Uj "'UN)
—a; SN —a;, SL i SL ;i SN .
= Tr(e NN e VT x Uy - Upxe Ve N8N x pN (5) x U - UR ) .

—Se.

n

Now, recall that pl,(§) = P pe;, - Qpe;, where pg;, = 875 for any n, and that
Tr (e_ 51n)

—S7 .
the e "%n’s act on different probes. Hence we get

T‘}V,p(a) =Tr (]18®ng11 ®®p;;;\,v x Uy - Up x p®p8j1ajl ®...®p8j1\‘:‘n\f % UfU;Q) :
and (5.6) follows exactly in the same way than (3.2)) follows from (3.1)).

6.3 Proof of Theorem [5.4]

1) The proof is standard, see e.g. [HMOL [JTPW., vHG], so we only briefly sketch it. Since [’ga]*

is completely positive, and primitive by Proposition [5.3] it follows from Perron-Frobenius the-

ory for completely positive maps [EHK] that 7 () is a simple dominant eigenvalue with pos-

itive definite left and right eigenvectors and (j5.9) follows then from (5.7)). Indeed there exists
n

~ > 0 (spectral gap) such that for all n one has (Ega]*> = (rg(a))"]AXy]—i—O ((r%(a) - ’Y)n)

where v and A denote the positive definite left and right eigenvectors of Egoé]* normalized such

that v(A) = 1. Thus

v (a) = p ((cga]*y (11)) = (rk(a)" [p(A) x v(1) + O ((1 - T%))“)] ,
¢
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and the result follows since both p(A) > 0 and v (1) > 0.
2) The symmetry relies on the following Lemma which is a direct consequence of (TRI)).

Lemma 6.3. Forany j = 1,...,M and ¢,oc € RM one has © o Eg.oé]* 00 = Eg.lga]. As a
consequence

0o ﬁgj‘}; 0O = cﬁ;g‘] and ©o L:Lj};‘ 0O = ﬁgjg‘].

The lemma indeed implies that the maps ££‘Z]¢* and EEZ_COC], resp. L:EZ]C* and Eﬁ;?], have the
same spectral radius which proves ((5.10)).

Proof. Denote by ©; the time-reversal of £; as in Section [3.3.3] Then for any X,Y we have

Tr (Y x @0 Ll g @(X))

Tr (@(Y) x Llet (@(X)))

- Ty (@(Y) ®pr " x UF x O(X) ® g’ Uj)
= Tr (Y@(%-(péj"‘j) x O®0;(Uf) x X ®0;(pg)) x 9®®j(Uj)>
= Tr (Y@éj—%‘ x Uj x X@pgj X U;F)

1—
- Ty (Y x Ll O‘](X)> :
where we have used Assumption (TRI) in the 4-th line. O

3) The argument is again of isospectral type and relies on the following lemma.

Lemma 6.4. If and hold then for any j = 1,.... M, o = (a,...,ap) € RM
and ¢ = (C1,...,Cu) € RM and X € B(Hs) one has

Eg-a]*(X) =L} (X eﬂjo‘fH:S) e Pioitls = e_BJ'aJ'HZSC;‘ (eﬁjajH/S X) , (6.7)
where Bj is the inverse temperature of &;, i.e. such that (j = Bref — B;.
Remark 6.1. Note that the mere existence of Hg requires (ER)) and (NEJ.

Proof. For any X € B(Hs) we have

LX) = T, (106%™ g, x UF x X @M 5 1)

= Tre, (II®P£]~ x UF x XehHs @1 x e fiosHs+He;) oy Il®e5j°‘ngj)

J

J

= T ( ® pe; X U;‘k x Xefioills @ 1 x Uj x e~ Bioills @ﬂ)

= (X eﬂjang) e~ PiogHs

where we have used (3.9) in line 3. The second equality is a direct consequence of (3.11). [
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We finally use the above lemma to prove (5.11)). For A € R let M, denote the right-

multiplication by eMs on B(Hs). It follows from Lemma that, for any j, a, ¢, we have
C[-Ogmil]* = M;l o E[.Oé]* o M, so that
J7 ]7 ’

I — o £l o My, = ey ra

—1
The maps Egogr/\ﬁ I and 5502]* thus have the same spectral radius, i.e. rg(a) = rg(a—i—/\,ﬁ_l).

6.4 Proof of Theorem [5.5]

The proof is an adaptation of the one in [JPW] for continuous time quantum dynamical
semigroups. In all this section the thermodynamical parameter ¢ is arbitrary but fixed, see

Remark and we shall omit it.
For a = 0 the operator L’go]* = E;‘ has a simple dominant eigenvalue 1. By perturbation
theory there exists a small circle I' centered at 1 such that for a € RM sufficiently close to 0

the only point in sp (Ega]*> inside or on I' is its dominant eigenvalue r4(c). We shall further

denote by Pﬁ[a] the associated eigenprojection. Note that Pﬁ[o] (X) = pi (X)1.
For n = 0,1 denote by Eﬁ,(a) the quantity

a) =Pz — "i 2 -l - dz :
E (o) ;ﬁ( v (- d7) ) (6.9

o

Writing Eg(a) as

Bi(@) = -1k ((z L) o a - Pﬁ[“]xm) o L (P o

21 ) 2 —ry(a) 2mi’
r

the first term on the right-hand side is analytic inside I" and it follows from Cauchy’s integral
formula that

Ef(@) = /i, (F() and Ef(a) = (H(a) - et (F™(D), (6.9)

so that i
ra) =14 2@ 6.10
(@) =1+ Bi(a) (6.10)

Since Pﬁ[o](ll) = 1 and 7*(0) = 1 it follows from that Eg(()) =1, E?(O) = 0 hence
8ajrﬁ(0) = Oa, E?(O) Using we get

-1 -1
0o, B () = %(z — 1) <(z - Lg"‘]*) 0 0, L1 o (z - ﬁg‘“‘]*) (]1)) £ (6.11)
I

so that, because £3(1) = 1 and .Cﬂ(pi) = p’i,

00, BH(0) = e = 1" 2 (20, amo(D)
r



38 6 PROOFS OF THE MAIN RESULTS

hence
0a, EE(0) =0 and 0, E5(0) = pf, (aaj £ga]*[a:0(ﬂ)> . (6.12)

Eq. (]6.10[) and (]6.12[) then give 0Oq, 8%.7"1(0) = Oq,, 5CY].E§i (0), while from 1) we infer that

_ o* - o f* dz
s B0 = e )0 (20l a0 (2 €)™ 020, LM o) 2
T
_ al* %) — o dz
+§(Z_1) 1p’i (aajﬁlg ] [Ot=00(z_£ﬁ) 1050%/.,‘5 : [azo(ﬂ)> %
Iy
B ol dz
+j§(z_ 1710 (PP £ o () 5 = (6.13)
T
= I+ I1I+1I1

The next lemma is the main technical ingredient leading from (6.12)-(6.13) to (5.15)-(5.17).

Lemma 6.5. For any j,k=1,..., M one has

T c
aa].£7[f;]*[a:0(X) = /BjMSOj(X)a 6aj££‘;‘]*[a:0(X) = 6jT(pjy(X>7 (614)
o T
aakaaj‘C?["a]*[a:O(]l) = ]k/BJQMD](H:SWHZS')7 (615)
and

BiBkT* L oo Lt yopjolt o0 Lf (®), ifk>j,

OOy L [amo(1) = < BiBT? LY o0 L joppoLy jo---0 L5 (®)), ifk <],

BiT L oo L ((D;(Hs, H)), ifj =k

(6.16)

Proof. Using Lemma [6.4], by straightforward calculation we get

0a, 71 (X) = 8y (£ (X 1) - £ (X))

J
and
J J

Using the definitions ((5.13)) of ¢;(X) and (4.12) of D;(X,Y) we thus obtain

O Oy £ (X) = 03087 (11 (X HG) — 261 (X ) Hs + £ () HE )

0o, L1 [az0(X) = BT 0i(X)  and  dayda, £ [aco(1) = §uB3TD;(HE, HE),  (6.17)

where we have used that [L}(Hj), Hg] = 0 in the second identity, see Remark
Finally (6.14))-(6.16) follow directly from (6.17)) and ([5.5)).

End of the proof of ([5.15)-(5.17]).

Since 0Oq; r(0) = O E? (0) combining (6.12f) and 1) recall also Remark we get 1}
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We now turn to ((5.16)-(5.17)). Using (6.14)), the first term on the right-hand side of (|6.13)

becomes d
~ _ z
I = B;fyr? §(z — D)7 (o (=27 (2F)) 5
r

where 7.y =T and 7, = % Recall Pu[o] denotes the eigenprojection of ﬁa" associated to the
eigenvalue 1. One has

o=t (eh o )7 01 (01)) g = plem 072 (o o A (09)) o -0
T r

Hence

I = e =17 (o (- £) 7 o = B () 32
r

= BBt o (w;’i o(1-£5) "o (1d— P (@;)) )

-1
where we have used that <z - Ea") o (Id— Pﬁ[o]) is regular at z = 1. Moreover, since the
spectral radius of [,;‘ restricted to Ran(Id — Pﬁ[o]) is strictly less than one due to Assumption

(ERf) we can write
(1—£5) "o (zd— B (cpg.) - i c ((Id - Pﬁ[o])(@g.)) - i ol (<p§. - p‘i(@g)) ,
n=0 n=0

so that .
I=B8iBry Y, o (@2 o L" (<I>§- - pi@?))) :
n=0

Proceeding in the same way with the second term I7 in (6.13) we obtain that I + II indeed
corresponds to the infinite sums in ([5.16[)-(5.17)).

Finally, the third term on the right-hand side of (6.13)) is 111 = p& (6%_ aakﬁtga]*[azo(]l) ,
and using (6.15])-(6.16)) it is easy to see that it leads to the remaining terms in ([5.16))-(5.17)).

6.5 Proof of Theorem [5.8

The proof of 1)-3) is a direct application of the Gartner-Ellis and Bryc Theorems, see e.g.
[DZ], [EL, Bry|, and the following lemma, while (5.20) and (5.21)) are direct consequences of
(5.10) and (b.11)) respectively.

Lemma 6.6. Suppose Assumption holds. Then ef(c) is a well defined real analytic
function on RM and for any a € RM and initial state p one has

lim leEL,p(a) = e (a). (6.18)

n—o 1

Moreover there exists a neighborhood B of 0 in CM on which holds.
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The proof is standard, it is similar to the one given for similar results in e.g. [JPW| vHG].
We briefly sketch it for the convenience of the reader.

Proof. The maps o — L’ga]*

are clearly analytic on CM. Then Assumption (ERf)) and

Proposition guarantee that, for any o € RM Tﬁ(a) is a positive isolated simple eigenvalue
of ££a]*. Hence regular perturbation theory, see e.g. [Kal, ensures that rf(a) defines a real
analytic map on RM with positive values. This proves that ef(a) = Tiﬁ log rf(a) is well defined

and real analytic. Eq. (6.18]) then follows from 1) in Theorem

The extension to a complex neighborhood of 0 follows also by a standard perturbation
theory argument, see also [JPW]. Indeed, Eﬁ[o]* has a simple dominant eigenvalue 7#(0) = 1
so there exists 0,6 > 0 such that sp <£ga]*) \{r¥(a)} {z e Cllz| < 7t ()| — &} for any

a e CM | |a| < e. Hence for such a’s we have

ot (7)) = o () o (1 55) )]

[e]s

where P!*! denotes the eigenprojection of £, associated to rf(a). In particular Pﬁ[a] (1) =

Pﬁ[o](]l) + O(e) = 1+ O(e), see Section so that for all n

oo i)

which proves the result. ]
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