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Abstract

We consider a quantum system S which interacts in a successive way with el-
ements Ek of a chain of independent quantum subsystems. We will consider two
situations: either identical interactions or random ones. In both cases, we show
that, under suitable assumptions, the system approaches a repeated interaction
asymptotic state in the limit of large times. In the case of identical interactions,
we also show that if the reference state is chosen so that S and E are individually
in equilibrium at positive temperatures, then the repeated interaction asymptotic
state satisfies an average second law of thermodynamics. Our method is based
on the analysis of products of effective operators modelling the effects of each in-
teraction. In the random situation we obtain results on the infinite products of
independant identically distributed random matrices. These results also apply to
e.g. inhomogeneous Markov chains (products of random stochastic matrices).

Keywords: Open quantum systems, Non-equilibrium quantum theory, Time de-
pendent interactions, Random matrices.
AMS classification: 37A30, 60H25, 82C10.

1 Introduction

A repeated interaction quantum system consists of a subsystem S which interacts
successively with the elements Em of a chain C = E1 +E2 + · · · of independent quantum
systems. At each moment in time, S interacts precisely with one Em (m increases
as time does), while the other elements in the chain evolve freely according to their
intrinsic (uncoupled) dynamics. The complete evolution is described by the intrinsic
dynamics of S and of all the Em, plus an interaction between S and Em, for each m. The
latter consists of an interaction time τm > 0, and an interaction operator Vm (acting
on S and Em); during the time interval [τ1 + · · ·+ τm−1, τ1 + · · ·+ τm), S is coupled to
Em via Vm. The system S + C is called a repeated interaction quantum system. One
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may think of S as being the system of interest, like a particle enclosed in a container,
and of C as a chain of measuring apparatuses Ek that are brought into contact with the
particle in a sequential manner.

We will consider two situations. In the first one, all the elements Em are identical, as
well as the interaction times τm and the interaction operators Vm. Our goal is to study
the large time behaviour of repeated interaction quantum systems, and in particular to
describe the effect of the repeated interactions on the system S. One of our main results
is the construction of the time–asymptotic state, which we call a repeated interaction
asymptotic state (RIAS). We will also analyse the thermodynamical properties of this
asymptotic state: energy variation, entropy production and their relation.

The theoretical and practical importance of repeated interaction quantum systems is
exemplified by systems of radiation-matter coupling, where atoms interact with modes
of the quantized electromagnetic field. In this setting, the system S describes one or
several modes of the field in a cavity and the chain C represents a beam of atoms Em
that are injected into the cavity. So-called “One-Atom Masers”, where the beam is
tuned in such a way that at each given moment a single atom is inside a microwave
cavity have been experimentally realized in laboratories [8, 10]. In an idealized model
for this process, one assumes that all the elements Em represent a copy of the same,
fixed quantum system, and that the interaction is given by a fixed interaction time and
a fixed interaction operator (the same for all m). Such idealized repeated interaction
systems have been analyzed mathematically in [11, 3]. However, it is clear that in
actual experiments, neither the interaction time τm (or Vm) nor the elements Em can
be exactly the same for all m! Typically, the interaction time will be random, given e.g.
by a Gaussian or by a uniform distribution around a mean value, and the state of the
incoming atoms will be random as well, for instance determined by a temperature that
fluctuates slightly around a mean temperature. (In experiments, the atoms are ejected
from an atom oven, then they are cooled down to a wanted temperature before entering
the cavity.) It is therefore important to develop a theory that allows for random repeated
interactions, which is the second situation we shall consider. Our approach of random
interactions reduces the problem to the study of infinite products of a certain class of
random matrices. The convergence results we obtain on such products also apply to
other situations like inhomogeneous Markov chains where at each step the transition
matrice is chosen at random.

In this paper, we shall only outline some of the arguments. All the results presented
here come from [3, 4] where more detailed proofs are available. For more references, we
also refer the reader to [3, 4]. Results on the convergence (of some kind) of products
of random matrices are numerous. We refer to [4], and references therein, concerning
this part of our work.

Acknowledgements. I wish to thank Claude-Alain Pillet for inviting me to give a
talk at the IRS conference 2007 and for his constant encouragements. I also thank the
organizers of the IRS conference. I am particularly grateful to my collaborators Alain
Joye and Marco Merkli.
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2 Identical repeated interactions

To describe the system, we use the convenient framework of quantum statistical me-
chanics. For an introduction to this framework, we refer to e.g. [1, 2]. In order to
make the presentation as simple as possible, we first restrict to identical interactions.
Random interactions will be considered in the next section.

2.1 Description of the model

In the case of identical interactions, the model consists of a system S which is coupled
to a chain C = E + E + · · · of identical elements E . We describe S and E as W ∗–
dynamical systems (MS , α

t
S) and (ME , α

t
E), where MS , ME are von Neumann algebras

“of observables” acting on the Hilbert spaces HS , HE , respectively, and where αtS and
αtE are (σ–weakly continuous) groups of ∗automorphisms describing the Heisenberg
dynamics. In this paper, we consider the situation dimHS <∞ and dimHE ≤ ∞.

We assume that there are distinguished vectors ψS ∈ HS and ψE ∈ HE , determining
states on MS and ME which are invariant w.r.t. αtS and αtE , respectively, and we
assume that ψS and ψE are cyclic and separating for MS and ME , respectively. One
may typically think of these distinguished vectors as being KMS vectors.

The Hilbert space of the chain C is defined to be the infinite tensor product

HC = ⊗m≥1HE

w.r.t. the reference vector
ψC = ψE ⊗ ψE · · · . (2.1)

In other words, HC is obtained by taking the completion of the vector space of finite
linear combinations of vectors ⊗m≥1φm, where φm ∈ HE , φm = ψE except for finitely
many indices, in the norm induced by the inner product

〈⊗mφm,⊗mχm〉 =
∏
m 〈φm, χm〉HE

.

We introduce the von Neumann algebra MC = ⊗m≥1ME acting on ⊗m≥1HE , which is
obtained by taking the weak closure of finite linear combinations of operators ⊗m≥1Am,
where Am ∈ ME and Am = 1lHE except for finitely many indices.

The operator algebra containing the observables of the total system is the von
Neumann algebra M = MS ⊗MC which acts on the Hilbert space H = HS ⊗HC .

The repeated interaction dynamics of observables in M is characterized by an inter-
action time 0 < τ <∞ and a selfadjoint interaction operator

V ∈ MS ⊗ME .

For times t ∈ [τ(m − 1), τm), S interacts with the m–th element of the chain, while
all other elements of the chain evolve freely (each one according to the dynamics αtE).
The interaction of S with every element in the chain is the same (given by V ).

Let LS and LE be the standard Liouvilleans (“positive temperature Hamiltonians”,
c.f. references of [6, 9]), uniquely characterized by the following properties: L# (where
# = S, E) are selfadjoint operators on H# which implement the dynamics αt#,

αt#(A) = eitL#Ae−itL# , ∀A ∈ M#,
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and
L#ψ# = 0.

We define the selfadjoint operator

L = LS + LE + V, (2.2)

omitting trivial factors 1lS or 1lE (by LS in (2.2) we really mean LS ⊗ 1lE , etc). L
generates the automorphism group eitL · e−itL of MS ⊗ME , the interacting dynamics
between S and an element E of the chain C. The explicit form of the operator V is
dictated by the underlying physics, we give an example in Section 4.

For m ≥ 1 let us denote by

L̃m = Lm +
∑
k 6=m

LE,k (2.3)

the generator of the total dynamics during the interval [(m− 1)τ,mτ). We have intro-
duced Lm, the operator on H that acts trivially on all elements of the chain except for
the m–th one. On the remaining part of the space (which is isomorphic to HS ⊗HE),
Lm acts as L, (2.2). We have also set LE,k to be the operator onH that acts nontrivially
only on the k–th element of the chain, on which it equals LE . Of course, the infinite
sum in (2.3) must be interpreted in the strong sense on H.

Decompose t ∈ R+ as
t = m(t)τ + s(t), (2.4)

where m(t) is the integer measuring the number of complete interactions of duration
τ the system S has undergone at time t, and where 0 ≤ s(t) < τ . The repeated
interaction dynamics of an operator A on H is defined by

αt(A) = URI(t)∗AURI(t) (2.5)

where
URI(t) = e−is(t)eLm(t)+1e−iτ eLm(t) · · · e−iτ eL1 (2.6)

defines the Schrödinger dynamics on H. According to this dynamics S interacts in
succession, for a fixed duration τ and a fixed interaction V , with the first m(t) elements
of the chain, and for the remaining duration s(t) with the (m(t)+1)–th element of the
chain. Being the propagator of a “time-dependent Hamiltonian” (which is piecewise
constant), URI(t) does not have the group property in t.

2.2 The reduced dynamics operator

Our goal is to examine the large time behaviour of expectation values of certain ob-
servables in normal states % on M (states given by a density matrix on H). The system
S feels an effective dynamics induced by the interaction with the chain C. Under a
suitable ergodicity assumption on this effective dynamics the small system is driven to
an asymptotic state, as time increases.
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The effects of an interaction on the system S can be described as follows. We
introduce

P := 1lHS ⊗ |ψC〉〈ψC |, (2.7)

the orthogonal projection onto HS ⊗CψC ∼= HS , where ψC is given in (2.1). If B is an
operator acting on H then we identify PBP as an operator acting on HS . Let φ ∈ HS .
Since ψS is cyclic for MS and dimHS < +∞, there exists A ∈ MS such that φ = AψS .
The reduced dynamics operator M is then defined by

Mφ := Pατ (A⊗ 1lC)ψS ⊗ ψC . (2.8)

Proposition 2.1 The operator M is a contraction on HS endowed with the norm
|||φ||| = |||AψS ||| := ‖A‖B(HS). In particular, spec(M) ⊂ {z ∈ C | |z| ≤ 1} and all
eigenvalues lying on the unit circle are semisimple. Moreover 1 is an eigenvalue for M
with corresponding eigenvector ψS .

Our main assumption (E) is an ergodicity assumption on the discrete dynamics
generated by M

(E) The spectrum of M on the complex unit circle consists of the single eigenvalue
{1}. This eigenvalue is simple (with corresponding eigenvector ψS).

Assumption (E) guarantees that the adjoint operator M∗ has a unique invariant vector,
called ψ∗S (normalized as 〈ψ∗S , ψS〉 = 1), and that

lim
m→∞

Mm = π := |ψS〉〈ψ∗S |, (2.9)

in the operator sense, where π is the rank one projection which projects onto CψS
along (Cψ∗S)⊥. In fact, we have the following easy estimate (valid for any matrix M
with spectrum inside the unit disk and satisfying (E))

Proposition 2.2 For any ε > 0 there exists a constant Cε s.t.

‖Mm − π‖ ≤ Cεe−m(γ−ε),

for all m ≥ 0, where γ := minz∈spec(M)\{1} | log |z| | > 0.

The parameter γ measures the speed of convergence.
Remark. If all eigenvalues of M are semisimple then in Proposition 2.2 we have
‖Mm − π‖ ≤ Ce−mγ for some constant C and all m ≥ 0.

Before stating our results, we finally discuss the kinds of observables we consider.
One such class is MS ⊂ M which consists of observables on the system S only. There
are other observables of interest. We may think of the system S as being fixed in space
and of the chain as passing by S so that at the moment t, the (m(t) + 1)–th element E
is located near S, c.f. (2.4). A detector placed in the vicinity of S can measure at this
moment in time observables of S and those of the (m(t) + 1)–th element in the chain,
i.e., an “instantaneous observable” of the form AS ⊗ ϑm(t)+1(AE), where AS ∈ MS ,
AE ∈ ME , and ϑm : ME → MC is defined by

ϑm(AE) = 1lE ⊗ · · · ⊗ 1lE ⊗AE ⊗ 1lE · · · (2.10)
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where the AE on the right side of (2.10) acts on the m–th factor in the chain. We call
these observables instantaneous observables. An example of such an observable is the
energy flux (variation) of the system S (see Section 2.4). One may also consider more
general observables, [3, 5].

2.3 Asymptotic state

We consider the large time limit of expectations of instantaneous observables

E(t) := %
(
αt(AS ⊗ ϑm(t)+1(AE))

)
for normal initial states % on M. Define the state %+ on MS by

%+(AS) := 〈ψ∗S , ASψS〉, (2.11)

where ψ∗S is defined in (2.9).

Theorem 2.3 ([3]) Suppose that assumption (E) is satisfied. Let % be a normal state
on M. Then, for any ε > 0, there exists Cε s.t. for all t ≥ 0

|E(t)− E+(t)| ≤ Cεe−(γ−ε)t/τ , (2.12)

where γ > 0 is given in Proposition 2.2, and where E+ is the τ -periodic function

E+(t) = %+

(
Pαs(t)

(
AS ⊗AE

)
P

)
.

In particular, E+(nτ) = %+(AS)〈ψE , AEψE〉.

Remark. Using (2.12) and the uniqueness of the limit, one can see that the state %+

does not depend on the choice of the reference state ψS .
Idea of the proof: In order not to muddle the essence of the argument, we take the
initial state of the entire system to be given by the vector ψ0 = ψS ⊗ ψC . Recall that

αt(AS ⊗ ϑm(t)+1(AE)) (2.13)

= eiτ eL1 · · · eiτ eLm(t)eis(t)eLm(t)+1(AS ⊗ ϑm(t)+1(AE))e
−is(t)eLm(t)+1e−iτ eLm(t) · · · e−iτ eL1 .

The first step consists in the following decomposition which serves to isolate the
dynamics of the elements E which do not interact at a given time. Taking into account
(2.3) we can write

e−iseLm+1e−iτ eLm · · · e−iτ eL1 = U−me−isLm+1e−iτLm · · · e−iτL1U+
m,

where

U−m = exp

−i
m∑
j=1

[(m− j)τ + s]LE,j

 ,
U+
m = exp

−i
m+1∑
j=2

(j − 1)τLE,j − i(mτ + s)
∑

j≥m+2

LE,j

 .
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One easily sees that U+
mψ0 = ψ0 and that U−m commutes with AS ⊗ ϑm+1(AE), so that

(2.13) rewrites

E(t) = 〈ψ0, eiτL1 · · · eiτLm(t)eis(t)Lm(t)+1(AS ⊗ ϑm(t)+1(AE)) (2.14)

e−is(t)Lm(t)+1e−iτLm(t) · · · e−iτL1ψ0〉.

The second step is to replace, for all m, the Liouvillean Lm by another (non selfad-
joint) generator Km of the interacting dynamics, called a C-Liouville operator, which
satisfy the following additional property:

KmψS ⊗ ψE = 0, (2.15)

i.e. it “kills” the reference vector. The C-Liouville operator has been introduced in [6]
to study non-equilibrium steady states (NESS).
Remark. For the existence of such a generator, we refer the reader to e.g. [6, 9]. One
can also get an explicit expression for it in terms of the Liouvillean and the modular
data of the pair (MS ⊗ME , ψS ⊗ ψE) [1, 2, 6].

Since the operators Km are also generators of the dynamics, and using (2.15), (2.14)
becomes

E(t) = 〈ψ0, eiτK1 · · · eiτKm(t)eis(t)Km(t)+1(AS ⊗ ϑm(t)+1(AE))ψ0〉. (2.16)

The next step is to use the independance of the various elements of the chain and
to rewrite (2.16) in terms of the reduced dynamics operator M . Recall that P is the
orthogonal projection onto HS ⊗ CψC . Note that Pψ0 = ψ0. Thus we have

E(t) = 〈ψ0, P eiτK1 · · · eiτKm(t)eis(t)Km(t)+1(AS ⊗ ϑm(t)+1(AE))Pψ0〉. (2.17)

We also denote PψE := |ψE〉〈ψE | so that P = 1lS ⊗ PψE ⊗ PψE ⊗ · · · . We have then

P eiτK1 = P eiτK1(1lS ⊗ 1lE ⊗ PψE ⊗ PψE ⊗ · · · ),

and

eiτK2 · · · eiτKm(t)eis(t)Km(t)+1(AS ⊗ ϑm(t)+1(AE))P

= (1lS ⊗ PψE ⊗ 1lE ⊗ 1lE ⊗ · · · )eiτK2 · · · eiτKm(t)eis(t)Km(t)+1(AS ⊗ ϑm(t)+1(AE))P.

Combining these two, we get

P eiτK1 · · · eiτKm(t)eis(t)Km(t)+1(AS ⊗ ϑm(t)+1(AE))P

= P eiτK1P eiτK2 · · · eiτKm(t)eis(t)Km(t)+1(AS ⊗ ϑm(t)+1(AE))P,

and by induction

P eiτK1 · · · eiτKm(t)eis(t)Km(t)+1(AS ⊗ ϑm(t)+1(AE))P

= (P eiτK1P )(P eiτK2P ) · · · (P eiτKm(t)P )(P eis(t)Km(t)+1(AS ⊗ ϑm(t)+1(AE))P ).
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Since all the interactions are identical, using (2.8),(2.15), together with the identifica-
tion HS ⊗ CψC ∼= HS , we have P eiτKmP ∼= M for all k. Hence

E(t) = 〈ψS ,Mm(t)P eis(t)K(AS ⊗AE)PψS〉.

We now use Proposition 2.2 to conclude that∣∣∣E(t)− 〈ψ∗S , P eis(t)K(AS ⊗AE)PψS〉
∣∣∣ ≤ Cεe−(γ−ε)t/τ .

It remains to note that

〈ψ∗S , P eis(t)K(AS ⊗AE)PψS〉
= 〈ψ∗S , P eis(t)K(AS ⊗AE)e−is(t)KPψS〉 = 〈ψ∗S , Pαs(t)(AS ⊗AE)PψS〉.

2.4 Energy and Entropy

It may not be meaningful to speak about the total energy of the system, because it
may have to be considered as being infinite, e.g. if the elements E of the chain are
infinitely extended quantum systems with non-vanishing energy density. However, we
can define the time variation of the total energy of the system and link it to its entropy
variation, giving us an average 2nd law of thermodynamics for RIAS.

2.4.1 Energy

During each interaction, i.e. each time interval of the form [mτ, (m+ 1)τ), m ≥ 0, the
full system is autonomous. Therefore there is no energy variation in it. On the other
hand, there might be an energy jump when the system S shifts from one element of
the chain to the other, i.e. as time passes the moments mτ .

In order to quantify these energy jumps, let us assume for a moment that the
various components, i.e. S and the elements E , are described via the usual Hamiltonian
framework. We denote by hS and hS the Hilbert space and Hamiltonian describing the
system S, by hE and hE those for an element E , and let v be a selfadjoint operator on
hS ⊗hE describing the interaction between S and E . In the same way as in Section 2.1,
during each time interval [(m− 1)τ,mτ), the hamiltonian of the total system writes

hm = hS +
∑
k

hE,k + vm,

where hE,k acts non trivially on the k-th element of the chain on which it equals hE ,
and vm = v acting on S and the m-th element of the chain. It is then clear that energy
change from time t1 to time t2 writes

∆E(t2, t1) = U(t2)∗hm(t2)+1U(t2)− U(t1)∗hm(t1)+1U(t1), (2.18)

where
U(t) = e−is(t)hm(t)+1e−iτhm(t) · · · e−iτh1 ,
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and where we decomposed t1 and t2 as in (2.4). Now, for (k − 1)τ ≤ t1 < kτ ≤ t2 <
(k + 1)τ , it is easy to see that (2.18) simplifies to

∆E(t2, t1) = U(kτ)∗(vk+1 − vk)U(kτ) =: δE(kτ), (2.19)

which we interpret as the energy jump observable as time passes the moment kτ .
Starting from a Hamiltonian description of the system and given reference states

%S (resp. %E) of S (resp. E), to get the algebraic description of Section 2.1 one then
performs the GNS representation (HS , πS , ψS) of (B(hS), %S), and similarly for E (see
e.g. [2] and Section 4 for a concrete example). The interaction operator V is then given
by V = πS ⊗ πE (v).

Now, for any observable O ∈ B(hS)⊗m≥1B(hE), one has π (U(t)∗OU(t)) = αt(π(O))
where

π(OS ⊗m≥1 OE,m) := πS(OS)⊗m≥1 πE(OE,m),

so that
j(k) := π(δE(kτ)) = αkτ (Vk+1 − Vk), (2.20)

where we set (see (2.10))
Vk = [1lMS ⊗ ϑk](V ). (2.21)

In view of the above (formal) discussion, we therefore define the energy jump ob-
servable of the repeated interaction system defined in Section 2.1 as time passes moment
kτ by j(k) := αkτ (Vk+1 − Vk).

Theorem 2.3 then tells us that for any normal state % on M and for any ε > 0, there
is a constant Cε s.t. ∣∣%(j(k))− %+

(
j+

)∣∣ ≤ Cεe−k(γ−ε), (2.22)

where
j+ = PV P − Pατ (V )P = −i

∫ τ

0
Pαs

(
[LS + LE , V ]

)
P ds.

Relation (2.22) and the fact that the energy is piecewise constant shows that %+(j+) is
the change of energy in any interval of length τ , in the large time limit. We thus call

dE+ =
1
τ
%+(j+) (2.23)

the asymptotic energy production. The asymptotic energy production does not depend
on the initial state of the system.
Remark. It is not hard to see that the expectation of the energy jump is constant in
the state %+ ⊗ %C , where %C is the vector state on MC determined by ψC , (2.1):

%+ ⊗ %C(j(k)) = %+(j+), ∀k ≥ 1. (2.24)

We introduce the variation of the total energy, ∆E(t), between the instants t =
m(t)τ + s(t) and t = 0. It is the sum of the energy jumps,

∆E(t) =
m(t)∑
k=1

j(k), for t ≥ τ , (2.25)
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and ∆E(t) = 0 if 0 ≤ t < τ . Estimate (2.22) shows that for any normal state % on M

there is a constant C s.t. ∣∣∣∣%(∆E(t))
t

− dE+

∣∣∣∣ ≤ C

t
, (2.26)

for all t > 0. The energy grows asymptotically linearly in time.

2.4.2 Entropy, average 2nd law of thermodynamics

Let % and %0 be two normal states on M. The relative entropy of % with respect to %0

is denoted by Ent(%|%0), where our definition of relative entropy differs from that one
given in [2] by a sign, so that in our case, Ent(%|%0) ≥ 0.

For a thermodynamic interpretation of the entropy and its relation to the energy
variation, we assume in this section that ψS is a (βS , αtS)–KMS state on MS , and that
ψE is a (βE , αtE)–KMS state on ME , where βS , βE are inverse temperatures. Let %0 be
the state on M determined by the vector ψS ⊗ ψC (c.f. (2.1)).

We are interested in the change of relative entropy of the repeated interaction
system as time evolves.

Proposition 2.4 ([3]) Let % be any normal state on M. Then we have

Ent
(
% ◦ αt|%0

)
− Ent(%|%0) = %

(
βE∆E(t)− αt(X(t)) +X(0)

)
, (2.27)

where ∆E(t) is the variation of the total energy (see (2.25)), and where

X(t) = βEVm(t)+1 + (βE − βS)LS ,

with Vk given by (2.21).

Idea of the proof: The proof of (2.27) is based on the entropy production formula
[7]: given any normal state % of M and any unitary U on H we have (our definition of
entropy differs from the one in [7] by a sign)

Ent
(
%(U∗ · U)|%0

)
− Ent(%|%0) = %

(
U∗

[
βE

∑
k

LE,k + βSLS

]
U − βE

∑
k

LE,k − βSLS

)
.

(2.28)
Taking U = URI(t), the argument of % in (2.28) can be written as

βE

{
αt

( ∑
k

LE,k + LS

)
−

∑
k

LE,k − LS

}
− (βE − βS)

(
αt(LS)− LS

)
,

so it suffices to prove (2.27) for βS = βE = β, i.e. to show that

αt
( ∑

k

LE,k + LS

)
−

∑
k

LE,k − LS = ∆E(t)− αt(Vm(t)+1) + V1. (2.29)

Eq. (2.29) follows from the identity

αmτ+s(L̃m+1)− αmτ (L̃m+1) = 0, 0 ≤ s < τ,
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which reflects the conservation of energy during the time intervall [mτ, (m+ 1)τ), and
using (2.20) and (2.25) (see [3] for more details). 2

If Ent(%|%0) <∞ then all terms in (2.27) are bounded uniformly in t, except possibly
Ent(%◦αt|%0) and %(βE∆E(t)). Hence (2.23) and (2.26) show that for any normal state
% on M there is a constant C s.t.∣∣∣∣Ent(% ◦ αt|%0)

t
− βE

τ
%+(j+)

∣∣∣∣ ≤ C

t
, (2.30)

for all t > 0. The entropy grows linearly in time, for large times.
The relative entropy is non–negative, so (2.30) shows that

%+(j+) ≥ 0.

We show in [3] that %+(j+) is strictly positive for concrete systems. It follows from
(2.30) also that

sup
t≥0

∣∣Ent(% ◦ αt|%0)
∣∣ <∞ ⇐⇒ %+(j+) = 0.

Since %+(j+) is independent of % it follows that for a given interaction (V, τ) the relative
entropy either diverges for all initial states %, as t → ∞, or it stays bounded for all
initial states %. In particular, if %+(j+) > 0 then there does not exist any normal state
% on M which is invariant under αt (i.e., such that % ◦ αt = %, for all t ≥ 0).

Proposition 2.5 ([3]) We have

lim
t→∞

[
Ent(% ◦ αt+τ |%0)− Ent(% ◦ αt|%0)

]
= βE %+(j+). (2.31)

The change of entropy during an interval of duration τ , for t → ∞, is thus given
by βE %+(j+) ≥ 0. We call

dS+ =
βE
τ
%+(j+) (2.32)

the (average) asymptotic entropy production. The quantity dS+ represents the increase
in entropy per unit time, in the limit of large times. It does not depend on the initial
state of the system.
Remark. One sees easily that the expectation of dS+ is constant in the state %+ ⊗ %C
(see also (2.24)).

Relations (2.23) and (2.32) lead us to the average 2nd law of thermodynamics,

dE+ = TEdS+, TE = 1/βE .

3 Random repeated interactions

We now turn to the situation where the interactions are taken at random. This random-
ness may have various origins: either the interaction time may vary, or the reference
state of the elements in the chain (via their temperature for example), or even the
elements themselves may differ (one can imagine that some impurities occur from time
to time). In a first part (Section 3.1) we show how to generalize the analysis of Section
2 to the situation of non identical interactions, and reduce the problem to a matrix
product. In Section 3.2, we then study infinite products of iid random matrices.
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3.1 From repeated interactions to matrices products

The system S now interacts with a chain C = E1 + E2 + · · · of independent quantum
systems, but the elements Em may be different. Each element is now described via
a Hilbert space HEm , a Von Neumann algebra MEm ⊂ B(HEm) of observables. The
uncoupled dynamics of Em is given by a group of ∗-automorphism R 3 t 7→ αtEm

(·).
We also introduce reference vectors ψEm ∈ HEm which are cyclic and separating for
MEm . The Hilbert space of states of the total system is then the tensor product
H = HS ⊗ HC , where HC =

⊗
m≥1HEm , and where the infinite product is taken

with respect to ψC =
⊗

m≥1 ψEm . The non-interacting dynamics is the product of the
individual dynamics, defined on the algebra MS

⊗
m≥1 MEm by αtS

⊗
m≥1 α

t
Em

. The
interaction times are now given by τ1, τ2, · · · and the interaction operators by V1, V2, · · ·

As in Section 2, we introduce the Liouville operators L# which satisfy

αt#(A#) = eitL#A#e−itL# , t ∈ R, and L#ψ# = 0,

for any A# ∈ M#, and where # stands for either S or Em. We then define the (discrete)
repeated interaction Schrödinger dynamics of a state vector φ ∈ H, for m ≥ 0, by

U(m)φ := e−iτm eLm · · · e−iτ2 eL2e−iτ1 eL1φ,

where
L̃k = Lk +

∑
n6=k

LEn (3.1)

describes the dynamics of the system during the time interval [τ1 + · · ·+τk−1, τ1 + · · ·+
τk), which corresponds to the time-step k of our discrete process. Hence Lk is

Lk = LS + LEk
+ Vk, (3.2)

acting on HS ⊗ HEk
. Of course, we understand that the operator LEn in (3.1) acts

nontrivially only on the n-th factor of the Hilbert space HC of the chain.
Our goal is to understand the large-time asymptotics (m→∞) of expectations

% (U(m)∗OU(m)) = %(αm(O)),

for normal states % and certain classes of observables O. In this section, for simplicity,
we only consider observables on the system S, i.e. O = AS ⊗ 1lC . For more general
observables, e.g. instantaneous observables, we refer to [5].

We now apply the same strategy as in the identical interactions case. We introduce
the C-Liouvilleans Km, denote by P := 1lS ⊗|ψC〉〈ψC | the orthogonal projection on the
system S, and define the reduced operators

Mm := P eiτmKmP, (3.3)

which are identified with operators on HS . In the same way as in the previous section,
one can show that

〈ψ0, α
m(AS ⊗ 1lC)ψ0〉 = 〈ψS ,M1 · · ·MmASψS〉 . (3.4)
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In order to study the long time behaviour (m → ∞) of the system we thus have to
understand the limit

lim
m→∞

M1 · · ·Mm. (3.5)

Finally, note the two following properties (see Proposition 2.1) of the operators Mk

which will be crucial in our approach:

1. For all k, Mk is a contraction of HS endowed with the norm ||| · |||.

2. For all k, MkψS = ψS .

3.2 Product of random matrices

In this section, we study the convergence of products of matrices of the form (3.5),
where (Mk(ω)) is a sequence of independant identically distributed random matrices
satisfying properties 1. and 2. above. Note that the norm ||| · ||| and the vector ψS
depend neither on k nor on ω. However, it appears that the particular choice of the
norm ||| · ||| and of the vector ψS are of no importance. The only relevant point is that
such quantities exist. We therefore introduce the following class of random matrices.

Let M(ω) be a random matrix on Cd, with probability space (Ω,F ,p). We say that
M(ω) is a random reduced dynamics operator (RRDO) if

(1) There exists a norm ||| · ||| on Cd such that, for all ω, M(ω) is a contraction on
Cd endowed with the norm ||| · |||.

(2) There is a vector ψS , constant in ω, such that M(ω)ψS = ψS , for all ω.

We normalize ψS such that ‖ψS‖ = 1 where ‖ · ‖ denotes the euclidean norm. To an
RRDO M(ω), we associate the (iid) random reduced dynamics process (RRDP)

Ψn(ω) := M(ω1) · · ·M(ωn), ω = (ωn)n ∈ ΩN∗
,

and we define the probability measure dP on ΩN∗
in a standard fashion by

dP = Πj≥1dpj , where dpj ≡ dp, ∀j ∈ N∗.

We will denote by E(f) the expectation value of a random variable f(ω). Finally,
throughout the paper, a.s. stands for “almost surely”.
Remark: Another important class of systems falling into this category are inhomoge-
neous Markov chains with random transition matrices, i.e. products of random stochas-
tic matrices. Stochastic matrices indeed satisfy (1) and (2) with the ‖ · ‖∞ norm and
ψS = 1√

d
(1, · · · , 1)T .

As noted in Proposition 2.1, the spectrum of any RDO lies inside the complex unit
disk, and 1 is always an eigenvalue with common eigenvector ψS .

Definition 3.1 Let M(E) be the set of RRDO’s M which satisfy the ergodic assump-
tion (E) (with invariant vector ψS).

The following result on the product of an iid sequence of RRDO’s is the main result of
[4].
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Theorem 3.2 ([4]) Let M(ω) be a random reduced dynamics operator. Suppose that
p(M(ω) ∈M(E)) > 0. Then E(M) ∈M(E), and we have

lim
N→∞

1
N

N∑
n=1

M(ω1) · · ·M(ωn) = P1,E(M) = |ψS〉〈θ|, P− a.s., (3.6)

where P1,E(M) is the (rank one) spectral projection of E(M) corresponding to the eigen-
value 1, and

θ = P ∗1,E(M)ψS . (3.7)

Remarks. 1. If moreover the adjoint operators M∗(ω) have a common invariant
vector ψ∗S , then we have the following stronger convergence (see [4]):

lim
n→∞

M(ω1) · · ·M(ωn) = P1,E(M) =
|ψS〉〈ψ∗S |
〈ψ∗S |ψS〉

, P− a.s.,

and the convergence is exponentially fast in n. This applies in particular to products
of bistochastic matrices with ψ∗S = ψS = 1√

d
(1, · · · , 1)T . (See also Theorem 4.3).

2. The Perron-Frobenius Theorem asserts that any stochastic matrix whose entries
are all nonzero belongs to M(E).

When applied to quantum repeated interactions, the above theorem shows

Theorem 3.3 [4] Let αn,ω be the random repeated interaction dynamics determined
by an RRDO M(ω). Suppose that p(M(ω) ∈M(E)) > 0. Then for any normal state %
and any AS ∈ MS ,

lim
N→∞

1
N

N∑
n=1

%
(
αn,ω(AS)

)
= 〈θ,ASψS〉 =: %+(AS), P− a.s. (3.8)

where θ is given by (3.7).

Remark. Assume that M(ω) ∈ M(E) for all ω, and denote by %+,ω the asymptotic
state of the identical repeated interaction system with RDO M(ω) (see (2.11)). Then
in general we do not have %+ = E(%+,ω). In other words, the asymptotic state of a
random repeated interaction system is not the average of the asymptotic states of the
corresponding identical repeated interaction systems.

4 An example: spin systems

We consider the application of our general results to the situation where both S and E
are two-level “atoms”, and where the interaction induces an energy exchange process.
This is a particular case of the third example in [3]. We present the results without
proofs, a complete analysis of this (and more general) examples are given in [3, 5].
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4.1 Description of the model

The observable algebra for S and for E is AS = AE = M2(C). Let ES , EE > 0 be the
“excited” energy level of S and of E , respectively. Accordingly, the Hamiltonians are

given by hS =
[

0 0
0 ES

]
and hE =

[
0 0
0 EE

]
The dynamics are given by αtS(A) =

eithSAe−ithS and αtE(A) = eithEAe−ithE . We choose the reference state of E to be the
Gibbs state at inverse temperature β, i.e.,

%β,E(A) =
Tr(e−βhEA)
Tr(e−βhE )

, (4.1)

and we choose the reference state for S to be the tracial state, %0,S(A) = 1
2Tr(A).

To find a Hilbert space description of the system, one performs the GNS construc-
tion of (AS , %0,S) and (AE , %β,E), see e.g. [2, 3]. In this representation, the Hilbert
spaces are HS = HE = C2 ⊗ C2, and the vectors representing %0,S and %β,E are

ψS =
1√
2

∑
j=1,2

ϕj ⊗ ϕj and ψβ,E =
1√

Tr e−βhE

[
ϕ1 ⊗ ϕ1 + e−βEE/2ϕ2 ⊗ ϕ2

]
,

respectively, i.e., we have %0,S(A) = 〈ψS , (A⊗1l)ψS〉 and %β,E(A) = 〈ψβ,E , (A⊗1l)ψβ,E〉.

Here, we have set ϕ1 =
[

1
0

]
and ϕ2 =

[
0
1

]
.

The Liouville operators are then L# = h# ⊗ 1lC2 − 1lC2 ⊗ h#, # = S, E . The
interaction operator is defined by

V := aS ⊗ 1lC2 ⊗ a∗E ⊗ 1lC2 + a∗S ⊗ 1lC2 ⊗ aE ⊗ 1lC2 ,

where a# =
[

0 1
0 0

]
and a∗# =

[
0 0
1 0

]
are the annihilation and creation operators

respectively, of # = S, E . Finally, the interacting Liouvillean is L = LS + LE + λV
where λ is a coupling constant.

4.2 Results

In general, the main issue is the spectral analysis of the reduced operator M . However,
it turns out that in this particular example one can compute explicitly the spectrum
of M (see [3, 5] for more general situations).

Lemma 4.1 The eigenvalues of M are 1, e0, e−, e+ where

e0 =

∣∣∣∣∣∣∣
(
ES − EE −

√
(ES − EE)2 + 4λ2

)2
+ 4λ2eiτ

√
(ES−EE)2+4λ2(

ES − EE −
√

(ES − EE)2 + 4λ2
)2

+ 4λ2

∣∣∣∣∣∣∣
2

,

e− = eiτ
ES+EE−

√
(ES−EE )2+4λ2

2

×

(
ES − EE −

√
(ES − EE)2 + 4λ2

)2
+ 4λ2eiτ

√
(ES−EE )2+4λ2(

ES − EE −
√

(ES − EE)2 + 4λ2
)2

+ 4λ2

,
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e+ = e−iτ
ES+EE−

√
(ES−EE )2+4λ2

2

×

(
ES − EE −

√
(ES − EE)2 + 4λ2

)2
+ 4λ2e−iτ

√
(ES−EE)2+4λ2(

ES − EE −
√

(ES − EE)2 + 4λ2
)2

+ 4λ2

.

As a consequence, M satisfies (E) if and only if τ
√

(ES − EE)2 + 4λ2 /∈ 2πZ.

We first consider this system with identical interactions. We thus have the following

Theorem 4.2 Suppose that τ
√

(ES − EE)2 + 4λ2 /∈ 2πZ, then the spin-spin system
satisfies Theorem 2.3. Moreover, the asymptotic state %+ is the Gibbs state for the
system S at inverse temperature β′ := EE

ES
β.

The situation where the interaction time τ is random is particular in the sense that
the adjoint operators M∗(ω) then have a common invariant vector, so that we don’t
need to consider ergodic means (see Remark 1 after Theorem 3.2).

Theorem 4.3 Let Ω 3 ω → τ(ω) ∈ R∗
+ be a random variable. We assume that

p
(
τ(ω)

√
(ES − EE)2 + 4λ2 /∈ 2πZ

)
> 0. Then there exists γ > 0 such that for any

initial state %, and for any AS ∈ MS ,

%(αn,ω(AS ⊗ 1lC)) = %β′,S(AS) +O(e−γn), P− a.s.,

where %β′,S is the Gibbs state for the system S at inverse temperature β′ := EE
ES
β.

Remark: Physically, it is reasonable to assume that the interaction time τ(ω) takes
values in an interval of uncertainty, since during an experiment, the interaction time
cannot be controlled exactly, but rather fluctuates around some mean value. Hence,
the assumption of Theorem 4.3 is certainly satisfied.

Finally, we consider the case where the atoms injected in the cavity vary, which we
model via their “excited” energy level.

Theorem 4.4 Let Ω 3 ω → EE(ω) ∈ R∗
+ be a random variable. We assume that

p
(
τ
√

(ES − EE(ω))2 + 4λ2 /∈ 2πZ
)
> 0. (4.2)

Then for any initial state % and for any AS ∈ MS ,

lim
N→∞

1
N

N∑
n=1

%(αn,ω(AS ⊗ 1lC)) = %β,S(AS), P− a.s.,

where %β,S is the Gibbs state (4.1) of the small system for the inverse temperature

β := − 1
ES

log
(

2
[
1− (1− E(e0(ω)))−1 E

(
(1− e0(ω))(1− 2Z−1

β′(ω),S)
)]−1

− 1
)
,

(4.3)
where Zβ′,S = Tr(e−β

′hS ).
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Remarks. 1. The expression (4.3) for the “asymptotic temperature” is of course also
valid in the case of Theorem 4.3. However, in that case, β′(ω) ≡ β′ and β = β′.

2. In general, β 6= E(β′(ω)) which reflects the fact that we usually have %+ 6=
E(%+,ω), as mentioned in the remark after Theorem 3.3.

3. Physically, one can imagine that different kinds of atoms are injected in the
cavity, or that from time to time some “impurity” occurs. It is therefore reasonable to
consider a finite probability space Ω, so that assumption (4.2) is satisfied provided at
least one atom has excited energy EE satisfying τ

√
(ES − EE)2 + 4λ2 /∈ 2πZ.

4. Of course, one can combine Theorems 4.3 and 4.4 to obtain a result for systems
where the interaction times, excitation energies (and other parameters, like tempera-
tures of the “incoming atoms”) fluctuate (see [5]).
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