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1 Introduction

Let us consider the motion of an electron in the single bagtd-ibinding approximation.
It is well known that in the absence of a dc electric field, tleeon moves ballistically
whereas, when a dc electric field is present, Bloch os@latprevent a current from be-
ing set up in the system. It is furthermore expected tha&fedectron is in contact with
a thermal environment, the resulting scattering mechaisithsuppress the Bloch os-
cillations and lead to a steady current. This phenomenoriczaaxample be described
within a semi-classical picture of the motion combined wtiité relaxation-time approx-
imation (seel[AM] for example). Alternatively, in open sgsts theory, one describes
the thermal environment and its coupling to the electrorhwitglobal Hamiltonian,
and traces out the environment variables to obtain, undelde additional conditions
such as weak coupling and appropriate scalings, effectmamical equations for the
electron alone. In treatments of this type, the environnepften described by a set
of oscillators (see for example[FZ]) or more generally byeefBose field. For a re-
view of various approaches to transport theory we refelr fo TBere has recently been
intensified interest in obtaining rigorous results alorgsthlines([DFEF, DF, CDM].

We present here a simple, explicitly solvable, fully quamtuechanical and fully Hamil-
tonian model of such a particle-environment system withi@ tepeated interaction
scheme, in which the environment is described by a chain ofltwel atoms. We
show that a dc current is created due to the interaction op#ntcle with its environ-
ment. In addition to drifting in the direction of the appliédld, the electron diffuses
around its mean position. We give a full analysis of the pbalig distribution for the
position of the particle in the large time regime (Theofed).3We then use a repeated
measurement scheme to describe the increments of thequositd energy observables
between timé) and timet (Theorem$§313 arid 3.2).

The rest of the paper is organized as follows. In Sedfion 2iveaydetailed description
of the model under consideration. Our main results aregpatzisely in Sectionl 3. We
describe the effect on the particle of the interaction wistingle atom in Sectiod 4, and
the main properties of the repeated interaction dynami&eatior{b. The proofs of the
main theorems are provided in Sectighs 6 @nd 7.

2 Description of the model

We consider a spinless particle on the one-dimensionatddft and submitted to a
constant external forcé’ > 0. The quantum Hilbert space and Hamiltonian of the
particle are

H, = (*(Z), H,=-A-FX, (2.1)



where A is the usual discrete nearest neighbor Laplacian &nthe lattice position
operator

A= (2)a)] = lp+1) (| — o) (@+1]), X =D zl|x)(z]

Identifying H,, with L*(T*, d¢) via the discrete Fourier transform, we have
—A =2(1 —cos &), X =10¢.

HereT! ~ [0, 2n[ is the first Brillouin zone and the crystal momentum. Defining the
translation operator

T=3"|e+1)(a] =%,

TEL
we can writeH, =2 — T — T — FX. We note for later reference that

X, 7| =T, [X,T|=-T*, [H,T|=-FT, [H, T =FT". (2.2)

WhenF = 0, H, has a single band of absolutely continuous spectspf/,,) = [0, 4],
and the motion of the particle is described by

T(t) — eithTe—ith — T,

X(t) = e Xe e = X +i(T — T,

showing its ballistic nature.

WhenF # 0, we setG = 2F 'sin¢ = iF~ (T — T*). The commutation relations
2232) yield . .
H,=¢e“%2— FX)e ¢, (2.3)

from which it follows thatH, has discrete spectrursp(H,) = 2 — FZ. This is the
well-known Wannier-Stark ladder. In the momentum repreg@n, the normalized
eigenvector), to the eigenvalué’, = 2 — F'k is given by

- 1 i ~Lsin(¢)—
V(€)= \/—2_7r el(2F (©)—ke) (2.4)
In the position representation, we therefore have
2
_ [T e tsne-kme 48 _ 5 (2
wk(x) /0 € 271' k—zx F )

where theJ, are Bessel functions. From their asymptotic behavior fgda (see e.g.
Formula (10.19.1) inJOLBLC]) we infer that

e
1 e
~ for |k — x| — oo,
Yy (ﬂk—x\) k= a] = oo
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which shows that), () is sharply localized around = k. The motion of the particle,
described by

T(t) — eithTe—ith :e_itFT,

. . 4 F F (2.5)
X(t) = efeXxe e — X a sin (775) sin (5 + 715) ,

is now confined by Bloch oscillations.

In what follows, we let the particle interact with one or mayevel atoms, each of
which has a quantum Hilbert spa@¢, = C? which we identify withT"_(C), the
fermionic Fock space ovét. The atomic Hamiltonian is given by

H, = dT'(E) = Eb*b,

whereE > 0 is the Bohr frequency of the atom ahd b are the usual Fermi creation
and annihilation operators. The later satisfy the candaicg-commutation relations

Vbbbt =1, B =b2=0. (2.6)

The initial state of the two-level atoms will be their eghiium state at inverse temper-
ature( described by the density matrix

pp = Zﬁ_le_ﬁHa, Zg=Tr(e ") =14 PP, (2.7)

The interaction between the particle and the two-level atochosen so that its effect is
to give a right or left kick to the particle, depending on wieztthe atom is in its ground
state or in its excited state. More precisely, we set

V=> (lz+1)(z| @b + |z)(z+1| @ b) = Tb" + T"b. (2.8)

T€Z

To understand this interaction, note that whén- 0, the translation operatdr can be
thought of as a lowering operator for the particle. Indesainf(Z.4) one finds

T = i (2.9)

Similarly, T* acts as a raising operator. As a resiitdescribes an exchange of en-
ergy between the two-level system and the particle. We pmintthat this interac-
tion is very similar to the one which appears in the Jaynesuw@ings Hamiltonian
where a two level atom interacts with one mode of the elecaigmetic field of a cav-
ity (through its electric dipole moment and in the rotatingwe approximation), see
e.g. [CDG/[Du]. Thermalization of the field through repeatadraction with two-level
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atoms was proven for the Jaynes-Cummings Hamiltonian if). [BlRe model treated
here is very similar to the one studied in_|BP], except thatgpectrum of7,,, contrary
to the spectrum of the mode of the electromagnetic field, tdnanded from below.
As a result, the system we treat here has no invariant statee @hall see below.

The full Hamiltonian of the patrticle interacting with a slagwo-level system acts on
the Hilbert spacé{, ® H, and is given by
H=H,+ H, +\V, (2.10)
where) € R is a coupling constant. As the more explicit formula
H=2-T(1—\") —T*1—Xb) — FX + Eb*b,

shows, one can also interpret the coupling to the two-lexstesn as altering the hopping
matrix elements of the original Hamiltonian. The operatbrs easily diagonalized by
noticing that it commutes with the “number operator”

H,—2 H
P-4+ =2 (2.11)

F E’

N = —“Xe ¢ 4 p*p =

which has a two-dimensional eigenspace to each of its eideew < Z. In particular,
if £ = F then the energy{, + H, is preserved by the full dynamics (which will be
computed in Sectiol 4).

We now turn to the description of the repeated interactioragyics (see e.g. [AP, BIM,
BF]). We let the particle interact successively, each timend) a fixed period- > 0,
with the elements of a sequence of atomes, during the time interval(n — 1)1, n7|,
the particle interacts with the-th atom and with none of the others. The Hilbert space
of the atomic reservoir is y
7{mw ::6837{&"’
n=1

whereM is the number of atoms and ea#h ,, is a copy ofH,. The Hilbert space of
the joint particle+reservoir system#s = H, ® Heny. The full unitary evolutiori/(¢, s)
of the system is thus described by the Schrodinger equation

10 U(t,s) = H(t)U(t, s), U(s,s) =1, t,s € [0, Mr], (2.12)

with time-dependent Hamiltonian

M M
H(t)=Hy+ Y Hyn+ XY xalt)(TH, +T7b,), (2.13)
n=1 n=1



wherey,, is the characteristic function of the interyat — 1)7, n7[ andH, ,,, b,,, b}, are
the Hamiltonian, annihilation and creation operators efrtkth atom. We will use the
following notation

H, = Hy+ Hyp + NT0, + T7b,),  Hy=H,+ Y Hy. (2.14)

1<k<M
k#n

Note thatH (t) = H, whent € [(n — 1)7, nt].

We denote by3'(H,) the Banach space of trace class operators on the Hilbere spac
H,. Given any density matrix for the particlg € B*(H,), p, > 0, Trp, = 1, we set
the initial state of the joint system to

M
po=pp@p5", P =@ ps.
n=1

After n < M interactions, this state evolves img, = U(nt,0)poU(n7,0)*. To obtain
the density matriy, ,,- of the particle after theseinteractions we take the partial trace
over the environment,

Ppnr = TrHenvpnT - TrHean(nT7 0)(pp ® p?M)U(TLT, 0)* (215)

In fact, for reasons that will become clear later (see Sesfiiband17), we shall consider
the more general linear operator defined®ift{,) by

Dyn(A) = Try,,. <I ® [pg]®M) U(nt,0) <A ® [p}j_o‘}(@M) U(nt,0)%,

where« is an arbitrary real parameter. Using the cyclicity of thetiphtrace w.r.t.
atomic operators and the fact thatis invariant under the free atomic dynamics we can
replacel (nr, 0) by e "= U((n — 1)7,0) in the last formula. It then follows that

Don(A) = Troy,, (I® pg)e_iTHn(Da,n—l(A) ® /)}j_a) el = Lo(Dan-1(4)),

where _ .
La(A) = Try, (I @ pe ™ (A@ pl ) ™. (2.16)

Here we have dropped the indexsincel,, : B(H,) — B(H,) does not depend on it.
We conclude thab,, ,(A) = L (A), so that for anyB one can write

Te(B® [p8]*" ) U(nr,0)(A @ [p5 2] " )U(n7,0)* = Ty, BL2(A).  (2.17)

The operatolZ, will play a central role in our analysis. For later referenee describe
its main properties in the following proposition.
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Proposition 2.1 For anya € R, £, is a completely positive operator d#t (H,,) with

spectral radius

cosh ((3 — )BE)
cosh (%6E) ’

wherep is defined in[(312). Its adjoint w.r.t. the dualit| B) = TrAB is the completely

positive operator oB(H,,) given by

0(a)=(1—p)+p (2.18)

L3(B) = Ter (I ply )™ (B @ pg)e ™.
Going back to the special case= 0, we have

ppvnT = Eg(pp)7

so that the discrete semi-gro(gy}),.cy acting on the density matrices df, describes
the reduced Schrodinger dynamics of the particle. Theaedliieisenberg dynamics is
obtained by duality: fo3 € B(H,,) andp, € B'(H,),

Try, BLy (pp) = Tryg, L™ (B) pyp.-

At this point, the choice of\/ becomes immaterial and we can consider an arbitrary
large number of interactions. Given an observdblen,, we write

(B)n = TrBLg(pp),

for its expectation value at time= nr.

3 Resultsand discussion

We are now in a position to state our main results on the dycsofithe particle. As
will be shown in Sectiofl4, coupling with a single 2-levelratturns the periodic Bloch
oscillations [Z.b) of frequencyg,c, = F' into quasi-periodic motion with the two
frequenciesug),o, and

wo =V (E — F)2 4+ 4)2, (3.1)

(see Equ. [[4]3) below). Repeated interactions with 2-lat@ins have a much more
drastic effect. The bounded motion of the particle now begpdiffusive. In terms of
the parameter

7) e [0,1], (3.2)



which is a simple function of the model paramet&rs~ and F', the motion is charac-
terized by a drift velocity

va=v(E, F)= gtanh (%E) , (3.3)

and a diffusion constant
D=DE,F)=2L (1 — ptanh? <H—E)) . (3.4)
27 2
More precisely, the following holds.
Theorem 3.1 Assume that’ > 0, A # 0 andwy7 ¢ 27Z so thatp €]0,1]. Let the

density matrixp, € B'(H,) describe the initial state of the particle and denote by
the spectral measures of the position observable the statep,, ,,,

_ / F(2) dpn(2) = (F(X) ) (3.5)

1. The Central Limit Theorem (CLT) holds: For any bounded comiusf onR,

) T — UqnT ) d;E
lim v%/2 .
n—00 / < V2Dnt ) / fl

2. If Tr (X?p,) < 400, then

(X)n

X — 2
lim —— =wvq, lim ( vant)")n
n—oo NT n—00 nr

=2D.

3. If Tr (e?Xlp,) < 400 forall ¥ > 0 then a Large Deviation Principle (LDP) holds
in the sense that, for any intervdl C R,

lim 1 log i, (nJ) = — inf 1(z), (3.6)

n—oo N zeJ

wherel(z) is the Legendre-Fenchel transformegf)) = log 6(—n/GE), i.e

)= g oot (5|

Here the functio is defined inZ13)



logB(ar) 1()

0.4 2

0.2

Figure 1: The cumulant generating function and the largéatiewn rate function.

Note that whernE = F', the mobility ., defined by

va _ Bsin®(A7)
Fo0F 21

and the diffusion constant
D=up™! (1 — sin?(\7) tanh? (ﬂTF)) :

satisfy the Einstein relation
: -1
};mOD = ufB~" = pukgT.

When E # F, the Einstein relation still holds provided one takes thatliZ? — 0 at
fixed F' (also in the definition of the mobility).

The rate function in Part 3 is explicitly given by

I(z) { - (%E“()g (%)) —log((l_pf(iﬁ)ﬂ)) for z € [—1,1],

400 otherwise

where

_ P RN s T
" (1= p) cosh(FE/2)’ R(w) = V/a* + a*(1 - 2?)

It is strictly convex on—1, 1] and satisfied (v47) = 0 and(x) > 0 for x # vq7 (See
Figurell).

Note that the drift velocity and diffusion constant do nopeed on the initial state of
the particle. The CLT gives us the probability to find the éetat timenr in a region
of size O(y/n) around the mean value,nr, whereas the LDP gives information on

9



this probability for a region of siz&(n). To put it differently, it yields information on
the probability that the particle’s mean speed falls asytigrlly in an interval of size
O(1). Loosely speaking, it says that

fin({n(vq + 0v)T}) ~ e ™ (ato)T),

The peculiar symmetry(—GE — n) = e(n) immediately leads to the relatiaiiz) =
—(BEx + I(—x) which tells us that

1 —v— Sv. —
lim lim - log Ae(PZv =00, vt ovln) g
8010 n—oco NT fn(nfv — dv, v + dv|T)

i.e., that negative mean velocities are exponentially lessylikehn positive ones. The
reader familiar with recent developments in non-equilibristatistical mechanics will
recognize here a kind of fluctuation theorem. Indeed, wd skalthat the symmetry of
the functione(n) is a direct consequence of time-reversal invariance ana sense, a
remnant of the Evans-Searles (or transient) fluctuatioordm (seel(317)).

We have further studied the statistics of the energy chaofé#se particle, the envi-
ronment and the whole system. Note that the latter is not@ggddo vanish, since the
Hamiltonian is time-dependent, so that total energy is naserved.

To study the change in the energy of the atomic reservoir veethis following op-
erational procedure. The reservoir being initially in thet equilibrium at inverse
temperature3 and the particle in the statg,, we measure the total energy of the
reservoir and the particle just before the first interactod just after the:-th inter-
action. These successive measurements yield the foursvalye £, ,, € sp H, and
Eenv 05 Eenv.n € sp Heny. 1t Will be convenient to express the resulting change inrgne
in terms of the “entropy like” quantities

ASpm = ﬁ*(Epm - Ep,O)a ASenvm = _6(Eenv,n - Eenv70)a

where 3* = BE/F. We denote byP" the joint probability distribution ofAS, ,,,
ASeny., and byE" the corresponding expectation. Note that the quantiigs, and
E..n, are well defined provided the reservoir contains only a fimitsber)/ of atoms
andn < M. However, under those circumstancesS.,, , does not depend of/
and we can therefore consider the reservoir contains antenfinmber of atoms. This
simple thermodynamical limit will always be understood ihat/follows.

Remark. When applied to electric charge, or more generally to partiamber, the two
measurement processes described above go under thefundominting statistic§see
e.g. [ABGK] and references therein). The present appbeoas closer to the approach
to current fluctuations found in[dR].
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Theorem 3.2 1. P"[AS,,, = ASenv.n] = 1. Hence, in the following we set

AS, = ASy. = ASenyn.

2. The cumulant generating function AfS,, is given by
log E" [e***"] = nlogf(a),
where the functiod is defined inZ13)

3. Its mean value and variance are

E" {AHS"] = —BBEvgr, E" {(AS”iEUd”T)T = (3E)*2Dr.

4. The CLT holds: For any bounded continuous function

, " AS, + BEvant \ | _a2pp T
g H 3EvaDnr )}_/f(”e Nord

5. The sequenc@™”), cy satisfies a LDP: For any interval$ C R,

lim l1ogIP’" {% € J} = —inf ¢(s),
n

n—oo N, seJ

with the rate function(s) = sup(as — logf(«)) = I (—i)
a€eR ﬁE
6. It satisfies the transient fluctuation theorem
P25 = ]
P[5 =]

=e™. (3.7)

Part 1 clearly reflects the fact that the number oper&iofljZzammutes withH so that

H H
“H Henv: E =2 = ’
5 Hy + 0 = 08 (2 + T

is preserved by the repeated interaction dynamics.

The patrticle’s drift velocity isy, and one sees therefore that, as expected, its energy loss
per unit time equals the work done Byper unit time. Simultaneously, the environment
gains energy at a ratev4: indeed, the particle moves on averagesteps to the right

per unit time, which corresponds t@ elements of the chain gaining an energyThis
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leads to an average energy gain or lossiof- F')v, for the full system. In the special
caseF = F, these rates are equal, and the total system neither loosgsims energy.

This is a consequence of the fact (mentioned after Equ.J(Pthat the interaction term
in the Hamiltonian commutes with the free Hamiltonian irstbase. In general, the
total energy is not preserved, which is a reflection of thetfaat the Hamiltonian of the

total system is time-dependent, as is clear frbm {2.13).

Note also that the symmetff1 — o) = 0(«) which leads to the transient fluctuation
theorem [(317) is evident from Propositibn]2.1. We shall se&ectiol 5P that it is
actually a consequence of time-reversal invariance.
Since "

-2~ X

F )

we expect a very similar result for the position incremant,, = X,, — X, obtained
from a double measurement &f at timet = 0 andt = n7. Indeed, the distributiof)”

of AX,, satisfies the following.

Theorem 3.3 1. The cumulant generating function AfX,, satisfies

_ n [ nAX,
g(?’]) = nhm —n lOgQ [e } 10g€9 ( E)

2. Its mean value and variance are

lim Q" [AXn] . Q" [(AXn — vdnT)z] .

n—0oo nrt nrt

3. The CLT holds: For any bounded continuous function

NG R

4. The sequencgQ"),cy satisfies a LDP: For any intervalg C R,
1 AX,

lim — log Q" [
n

n—oo

€ J} — inf I(z).

zeJ

5. It satisfies the asymptotic fluctuation theorem

AX
" elv—0d s T 1)
6E(/U - 57)) S lim l]_og @ |: nr [ v v U+ 'U”

< GFE 0
n—oo N, Qn [%E[U—(SU,U—F(S’UH —6 (U+ U)a

forv €] — 1, 1[ anddv > 0, small enough.
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Remark. This fluctuation theorem is not of transient (or Evans-Ssartype since it
only holds in the large time limit. It is not of the stationgyr Gallavotti-Cohen) type
either since there is no stationary state for the dynamgsjeashall see in Sectidn®.3.
For more details on these fluctuation theorems, we referethaar to e.g! [JER, RM].

Note also the similarity with Theorem~8.1. TheorEml 3.3 déssrthe position incre-
ment of the particle without requiring sharp localizatidritee particle position at time
0, contrary to Theorern3.1.

4 Interaction with a singletwo level atom

In this section we investigate the dynamics of the partidleracting with a single atom
described by the Hamiltoniab{2]10). As already remarke&dan easily be diagonalized
by exploiting the fact that it commutes with the number opmr§Z.11). To work out
this diagonalisation explicitly and to get a tractable fatanfor the propagatar‘? we
introduce the unitary operator

U= (Tb"b+bb*)cost — (Tb* — b)sinb,
wheref is given by

- 2\
cos(20) = b F, sin(20) = —.
wWo wWo

Using the commutation relatiorls (P.2) afid12.6), one theilyeahecks that

1 E—-F
U'HU = H, + wy (b*b_ﬁ) + 5 4.1)
It follows immediately that, foilf” # 0, the spectrum of{ is purely discrete,
E—-F n Wo
2 2

If wo/F is not an integer, all the eigenvalues are simple. The nozedhkigenvectors
are given by

|6r,—) = Ulor) @ [0) = cos Ohy) @ [0) — sin0lpe1) @ [1),

|Gk,+) = Ulthi) ® [1) = cos O|thy41) @ [1) + sin Oy) @ [0),
where|0) and|1) denote the ground state and the excited state of the atomoudée
the situation is completely different wheén= 0. The spectrum

sp(H) =2 — FZ +

sp(H) = (%(E CF—w)+ [0,4]) y (%(E CFtwo) + [0,4]) ,

13



is then purely absolutely continuous.
From Equ. [[411) we get the explicit formula for the propagato

et — [etlE=1)/2gitwo(b"b=1/2) gitHy e 4.2)
which reduces the proof of the following result to a straigiward calculation.
Lemma4.1 For any operatord onH, and anyt € R one has
e AR ps ™ = Ag(A) @60+ By (A) @b+ By (A @b° + Cs(A;) @ bb*,

whereA; = e e A ¢'*He gnd

—PE 4N? t 1 4)2 t
Agi(A) = ° (1 — 2 sin? (“’70) A+ 5 sin? (“’—0) TAT",

12X\ (1, E—-F | wol . _ "
Bsi(A) = 7o <§ sin(wot) — o sin? <70)) (AT* — e PPTA) |

1 4)\2 . u}()t e_ﬁE 4)\2 . u}()t «
C,B,t(A) = Z_ﬁ (]_ -~ SlIl2 (7)) A + ZIB w—g SlIl2 (7) T*AT.

By noting thatX = 2X ® ps—o the preceding lemma can be used to compute the
evolution of the position observable

eltHX e—ltH — elthXe—lth

4\ 2NE - F t
w (Lo vy 2Dy ) (9 @)
w; w; 2

- ii(Tb* — T7b) sin(wyt).

We conclude that the coupling to a single atom does not soiisiis alter the long term
behavior of the particle. In particular, whén # 0, the motion remains bounded. We
will see in the next section that the situation is very diéfarfor repeated interactions
with a sequence of atoms.

5 Repeated interaction dynamics

In this section we study the properties of the operatgrdefined in[Z.16). Besides the
special caser = 0 which describes the reduced Schrodinger dynamics of theclea
and is of course central, the operathrappears in the study of the cumulant generating
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function of the “entropy” (see TheoremB.2 ahd17.3) in Sedil.1). In particular we
shall see that the consequence of the time reversal ineariahthe dynamics of the
particle coupled to a two-level atom @, is at the origin of the symmetd(1 — o) =
0(«) and hence of the transient fluctuation theoreml (3.7).

It is clear thatn — L, is entire analytic as a map frofd to the bounded operators on
B(H,). Moreover, since

Try, BLo(A) = Tr(B @ p§le ™ (A ® py ) ™,

L, is also bounded as an operator on the Schatten-von Neumassie(H,,), for any
p € [1,00].
Using the cyclicity of the partial trace w.r.t. operatorsi@pnwe can write, forx € R,
La(A) = Trp, (I @ ple” ™ (A® ps ) ™)
= Ty, (I @ e *Me/2) 7T (I @ ¢*M2/2) % (A ® pp)
% ([ ® eaﬁHa/Q) ei7-H (I ® e—aﬁHa/2)>
= Try <e_iTH(a)A ® pg eiTH(a)*> , (5.1

a

whereH @ is a bounded perturbation &f,

H(@) — q—aBHa/2 [] qaBHa/2 (5.2)
= H, + H, + \e™ @PHa/2)/ coHa/2
= Hy, + H, + Me *PERTY 4 e*PE2Tp).

This shows in particular that,, is completely positive for real values of

5.1 Gaugeinvariance

Lemmab5.1 The operatorZ, commutes with the evolution of the non-interacting par-
ticle, i.e., _ . . _
Ea (e—lthAelth) — e_‘thﬁa(A)elth, (53)

holds for allt,a« € Rand A € B(H,).

Proof. From the fact thaff commutes with the number operatbr(2.11) we infer

_ itN gy —itN __ _itHy/F |itHa/E [ —itHa./E —itHp/F
H=¢e""He = otHe/F gitHa/E [ro=itha/E o P/,

so that

e—ltHa/Ee—lTHeltHa/E _ elth/Fe—lTHe—lth/F'
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SinceH, andH, commute, we also have

i —irH(®) j i —irH(®) i
e 1tHa/Ee irtH®) itH,/E :elth/Fe irH lth/F’ (54)

€
where @ is defined in[[5R), and hence
eitto ( o—itHp A eith> o itHp

. _ ((l) s . . (a)* s
— TTHa (elthe itH e 1thA ® s elthelTH e 1th>

_j _irH(@) itH. —itH, irH(@* itH.
1tH3LF/Ee itH e‘tH"F/EA®pﬁe 1tHdF/Ee17'H eltHdF/E>

— Ty, (e—itHaF/Ee—iTH<“)A ® ps eiTH(O‘)*eitHaF/E)
)

where we used(3.1) in the 1st line{5.4) in the 2nd one, tbitifat /7, commutes with
A ® pg in the 3rd one, and finally the cyclicity of the trace. O

Introducing the non-interacting evolution operator
Z/{(A) — e—iTHpAeiTHp7

we define the “interaction picture” reduced evolutiorfas: L., oU~!. Note that, by
Lemmd®&.l, we have _ _
Lr=LoU" =U"o L),

foranyn € N.

5.2 Time-reversal invariance

Let us denote by, the complex conjugation oft(Z), i.e., (Cyu)(x) = ¢ (x) and set
C(A) = CLACT,

for A € B(H,). This anti-linear involution implements time reversal betparti-
cle’s dynamics. Indeed, since the Hamiltonidp is real in the position representation,
CyH, = H,C,, one hag’,e'» = e~ "> for all ¢ € R and in particular

Cod=U'oC.

Lemmab5.2 Foralla € Ronehasl! =Co L;_,oC.
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Remark. As will be clear from its proof, this property af,, is a consequence of the
time-reversal invariance of the dynamics of the particlepted to a two-level atom. It
implies that the spectral radius 6f, andZ,_,, coincide.

Proof. SettingC,(ao|0) + a1]1)) = ag|0) + a;|1) defines a anti-unitary operator &1,
such thatC,H, = H,C, and hence

Cpee = e, Cups = psC.

SinceT andT™ are real w.r.t.C}, andb andb* are real w.r.t.C,, the Hamiltonian4 is
real w.rt.C' = C, ® C, and one hag'e! = e "H ('

From the fact that the partial trace &f), satisfies
Try, CAC™ = C(Try, A),
forall A € B(H, ® H.), one deduces that, fot, B € B(H,),
C(ALo(B)) = C(Try, (A @ pge™ ™ (B ® py*)e'™)

= Ty, C(A @ p)e™ " (B @ ply @)™
= Ty, (C(A) @ pf)e™ (C(B) ® py *)e™ ™"
= Try, (C(B) @ py *)e ™ (C(A) ® p§)e™
=C(B)L1_40C(A).

It follows that

Try, ALL(B) = Try,C(ALL(B))
= Try,C(B)L1-a 0 C(A)
= Try,CoLi_o0C(A)B,
and hencel’ (A) =Co Ly, 0C(A). O

5.3 Krausrepresentation

SinceL,, is completely positive forr € R, the same is true of,,. The following result.
describes the Kraus representation of the latter operator.

Lemma5.3 Foranya € Rand A € B(H,), one has
Lo(A) = e*PPp_T* AT + pyA + e *Fp, TAT*, (5.5)
where
e PE 1
p-= mp, p=1-—p py= mﬂ
with p defined in Equ@@2).
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We note that**Fp_ 4 py + e~ *¥Fp, = (a), whered(«) is defined in Proposition 2.1,
S0
Lo(I) = L5(1) = 6(a)]. (5.6)

Considerk,, = 6(a)~'L, as an operator o' (H,). Sincek,, is completely positive
and trace preserving, it has unit spectral radius (se€ [SElghced(«) is the spectral
radius of,. This proves Propositidnd.1. The remark after Lenimé 5.2 explains
the origin of the symmetrg(1 — a) = 6(«).

Let us now setv = 0 in Equ. [5.5) and explore the implications of this expres$ay the
dynamics of the particle. I describes the state of the particle, tiénT (respectively
TpT™) represent the same state translated by one lattice spading left (respectively
right). Note moreover that

p- +Dpo+py =1,

so that the reduced evolutiady = Zo o U consists of a free evolution with the Hamil-
tonian H,, followed by a random translation b1 or 0, and with probabilitieg,. or
po- Note that the dynamics is trivial = 0, i.e., if wor = 2om with m € Z. In
that case there is no translation and the particle evolvesrding to/,,. This can be
seen directly on Equl{4.2) by noticing that{,U* = H, + Fb*b. It follows that the
propagator factorizes

elTH _ (_1)melT(E—F)/2 e17—HlD ® elTFb b

)

and, up to an inessential phase factor and a renormalizefitime atomic Bohr fre-
guency, the particle and the two-level system evolve asy thiere not coupled. This
resembles the “Rabi oscillation” phenomenon which appeatise Jaynes-Cummings
model for matter-radiation interaction. In the followingwvill avoid this resonance
and assume # 0.

Introducing a family of i.i.d. random variablés,, taking the valuest1 and 0 with
probabilityp.. andp,, and definings,, = > ", Y;, we can very concisely write

Eg(p) — e—inTHpE [TSin—Sn] einTHp‘ (57)

Accordingly, the study of the dynamics of the system is reduto that of a classi-
cal random walk. As a further remark, suppose that the Irstate of the particle is
invariant under the uncoupled dynamics, so that

p="> piltr)(Wnl. (5.8)

kEZ

Then, using EquIT29), we obtaitf (p) = 3, pv" [k (1] with
P = ppl™ + popl + pop,. (5.9)
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Thus, the set ofd-invariant states is invariant under the reduced dynanmcsthe
latter reduces to a classical Markov chain on this set.

Before turning to the proof of Lemnia.3, let us show that #diced dynamics has no
stationary state: there exists no density matron 7, such thatC,(p) = p. Indeed, it
follows from LemmdXll that the subspacgs d € Z, defined by

Ja={p € B'(H,) | e "Hrpeitte = ¢y forall t € R}

={p € B' (M) | p =" prltoe) (Visal},

keZ
are globally invariant undef,. Hence, if a state is stationary, so is its diagonal part
po = D P|tw) (k] wherep, = (V| ptr). Equ. [2.D) then writes
Pr1 — Zapr + e PEpr = 0,

which implies that;, = a + be®F* for some constants, b € R. But this contradicts the
factthatl = Trp =), py.

Proof of Lemmalb.3 We start with the fact that

ZopZ1-a)p

pge ITHA®p1 o ITH Zﬁ paﬁ

e—iTHA ® p(l—a)ﬁ eiTH7

so that, applying Lemnia4.1, we get

ZopZ(1-0)p

—iTH -« 17'H
A
pﬁe ® pg Z

Pas (Aa_a)p s (AU + Ba_aypi (An)b
+B(1—a)ﬁ,t(At)*b* + C(l—a)ﬁ,t(At)bb*)-

Upon taking the partial trace oveét,, we obtain

2ol (1—o e~ oBE 1
Lald) = == (A(l el A) +c(1_a>5,t<At>Z—aﬁ),
and the result follows from Lemnia 4.1 with some elementagglada. O

6 Proof of Theorem 3.1

To complete the proof of our main results, we shall need theviing technical lemma.
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Lemma6.1 1. If F' # 0 then, for anyy € R, one has

lim HeitheinX/\/fe—ith N einX/\/ZH —0.

t—o00

2. If F # 0 then, for any) € R, there exist€’, > 1 such that
077—1 < e—nX/2eithenXe—ithe—nX/Q < Ona
forall t € R.

Proof. 1. By Equ. [ZF), one has!» Xe~"#» = X + B,, whereB, is a uniformly
bounded operator valued functiontofDuhamel formula yields

. . . . n
elthemX/\/Ze itH, elnX/\/z — _th7

Vi

where
1
R, = / GBI X/
0

The claim follows from the fact thak; is also uniformly bounded.
2. By Equ. [ZB) we can write, for any ¢ € R,

Q(t, 77) — oitHp o —inX —itHy JinX _ (iG —itFX ~iG  ~inX jiG jtF X ,—iG jinX
From the commutation relatiof(2.2) we get, foe R,
—i60X i0X 2 :
e Ge :Fsm(g—i-ﬁ),

so that
Q(t, 17) _ e2i(sin f—sin(f-i—tF)—sin({-i—n)-i—sin(f-l—tF-‘rn))/F‘

It follows thatn — Q(t,n) € B(H,) extends to an entire analytic function. Moreover,
one easily shows that

C, = sup [|Q(t,n)| = e*inrimal/F
teR

for anyn € C.

Now sinceX, = ¢itf» X ¢ 1 js self-adjoint the subspad®, = Dom(c¢*?) is dense in
H, and such that, fop € D;, the vector valued function — e"Xt¢ is entire analytic.
Fory € Dy, ¢ € Dy andn € R one has

(™l 9) = (Y]Q(t,n)9).
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By analytic continuation, both sides of this identity exdéo complex values of. In
particular, one has

(" e ) = (LIQ(t, in)¢),

for anyn € R. SinceD, is a core ofe™*t, the last identity extends to alf <
Dom(e™) andy € Dom(e™ ). The modulus of its right hand side being bounded by
Ci,|l¥] 1|¢]|, one concludes thdtan(e"*) C Dom(e?**) and

Xt —nX
JerXte™mX | < G
It follows that

e—nX/2eq7Xte—77X/2 _ (enXt/Qe—nX/2)*(enXt/2e—77X/2) < 01277/27

—nX/2 nX¢ ,—nX/2\—1 X/2 . —nXt nX/2 2 2
(e n / (§ te / ) - en / (§ n te / < C i /2 - Ci /2,

which together imply

0—2 < e—nX/QenXte—nX/2 < 02

in/2 in/2°
O
We now turn to the proof of Theorelm B.1. First, from Equ.](é)find that
(fXO)n = Te(f(X)L5(pp)) = B [Tr (f(T~> e Xe™ ) py) |
Hence, using Equ[{4.5), we get
(X)) =E[Tr (f (T77 (X + Ba) T™) pp)]
—E[Tr (f (X + 5, + B.) py)]. (6.2)
where 4 ntF ntF
B, = sin (T) sin (5 + T) . (6.2)

To prove Part 1, we study the convergence in distributiomefsequence of probability
measuregi,(J) = pn(V2DntJ + vgnt), J C R, wherep,, is defined in[[35). By the
Lévy-Cramér continuity theorem, this is equivalent te ffointwise convergence of the
sequence of their characteristic functions. We shall foeggrove that for any € R

ﬁn(einu’v) = /Rein:c dfi,(z) = <ei77(X—vdnT)/\/m> n—oo —n?/2

n
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Using [6.1), we can write

ﬁn(einx) —F [Tr <ei77(X+Sn—vdnT+Bn)/\/2Dm-pp>}

- K [ein(sn—vdnT)/\/2Dn7’:| Tr <ei77(X+Bn)/\/2DnTpp) ] (63)

The classical CLT implies that the first factor of the laselconverges, as — oo, to
e~"/2 since, as a simple computation confirms

LR[S =0, —Var[S,] = 2D, (6.4)

nrt nrt
wherevyq and D are defined in[(3]13) an@ (3.4). The second factor is conttdliePart 1
of Lemmd&&.1l which implies

lim Tr (ein(X—i-Bn)/v 2Dn7pp) — lim Tr (einX/\/2DnTpp) )

n—~0o0 n—~0o0

The right hand side of this identity isby the dominated convergence theorem.

The first assertion in Part 2 follows from

LX), = S Te(X L2 ()

nTt nTt
1
= —E[Tr((X + Sy + B.)py)]

1 1
=—F —Tr((X + B
T [Sn] + nr r((X + n)Pp)>

since the first term on the last line convergesjgby Equ. [6.%)) while the second
vanishes ag — oo. The proof of the second assertion is similar.

To prove Part 3, we shall study the cumulant generating fomct
en () = log 11, (€") = log Tr (" L3 (py)) . (6.5)
By Equ. [61){6.R) and(25), one has
en(n) = logE [Tr ("X +5n 480 p )] = log E [""] + log Tr (e retXe e p )

One easily computes the first term on the right hand side

nSn] _ ny1] _ _i
logE[e ]—nlogE[e ]—nlog@( ﬁE)'
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Writing the second term as

Y

log Tr ((pllj/QenX/Q) e—nX/2eim'Hpe77Xe—im'Hpe—nX/Q (enX/2pll)/2)>
and applying Part 2 of Lemnia®.1 we get the bound
| log Tr (e"Hee™ e e p ) | < log O, +log Tr (e py) |

from which we conclude that

.1 n
= lim —e,(n) =logh | ——== | .
e(n) = lim —eq(n) = log ( 5 )
Sincee(n) is differentiable, the Gartner-Ellis theorem (see e.gZ][Dmplies the LDP
3.8) with the rate functiori (x) related toe(n) via the Legendre-Fenchel transform.
Finally, the symmetry(1 — o) = 0(«) translates into

e(n) = e(=0E —n),
which impliesI(z) = —GFEz + I(—x).

7 Full counting statistics

In this section we start with a precise description of the m@asurements processes
involved in the formulation of Theorenis 8.2 andl3.3 and pedcden to the proofs of
these results.

Suppose that the initial state of the particle is describethé density matriy, and set
p= pp®p§’M. LetAq,..., A, be commuting self-adjoint operators on the Hilbert space
H = H, ® Heny. We assume thél; to have pure point spectrum. We define the vector
valued observabld = (A4, ..., A,,) and its spectrurap A = sp A; x - - - X sp A,,,. We
denote byP, the spectral projection associated to the eigenvalaep A.

The outcome of a first measurement of the observablastimet = 0 willbe a € sp A

with probability Tr pP,. After this measurement the state of the combined system
is reduced toy’ = P,pP,/Tr(pP,). This state now evolves under the repeated in-
teraction dynamics and, after theth interaction, become& (nr,0)p'U(nr,0)*. A
second measurement df at timet = nr will yield the resulta’ with probability
TrU(nt,0)p'U(nT,0)*P,. Thus, the joint probability distribution for the two susee
sive measurements d&f is given by

P (a,a") = Tr pP, x TrU(nt,0)p'U(n,0)" Py
= TrU(n,0)P,pP,U(nT,0)*P,.
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Therefore, the probability distribution of the measurect@mentAa = o’ — a aftern
interactions is

Ph(Aa) = Y TrU(nt,0)PupP,U(n7,0) Py

a,a’ €sp A
a’—a:Aa
The cumulant generating function of this distribution is

gn(a) =log Y Pi(Aa)er?

Aacsp A—sp A

= log Z @ =) Ty U(nr,0)P,pP,U(nt,0)* Py,

a,a’€sp A
where - denotes the Euclidean scalar productiRsh. At this point, it is useful to note

that
ﬁ: Z Pame

a€sp A

is a density matrix which commutes withso thatP,pP, = pP,. Hence, we can rewrite

gn(a) = log Z @ =) Tr U(nr,0)pP,U(nt,0)* Py
a,a’€sp A

=log Tr U(nt,0)pe U (nt,0) e (7.1)
In the special case where thg are observables of the particle, we obtain
gn(@) =log Tr L (py e™*)e* A = log Tr p, e ALy (e*4), (7.2)

wherep, = >° 4 Papp P

7.1 Proof of Theorem32

To prove theorerfi 312 we consider the case (3*H,,, —3Hey, ). From Equ.[Z11), and
foranyn < M (whereM is the number of atoms in the reservoir), we have

gn(ap7 aenv) — log En [eapASp,n“l‘aenvASenv,n]

— log TI' l—](nT7 O)ﬁe_apﬁ*Hp-i-OéenvﬁHenv U(nT, O)*eapﬁ*Hp—aem,ﬁHem,’

where
= Z PpEpp pE®PenvE’pg Penv,E’;

Eesp Hp
E’€sp Henv
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andpP, g, Py g are the spectral projections 8, andH.,,, . Sinceng commutes with
Heyy, this reduces t¢p = p, ® p?M with p, = >~ peq, i, Poepp .- HeNce, invoking

@Z.11), we obtain
In(Qp,; Qeny)
= log TrU(nt,0)(p, e " r @ p?Meae“VﬁHe“V)U(nT, 0)* (evrF He @) g atenvFHenv)
— log Tr (eap,@*Hp ® [pgenv} ®M)U(n7—’ O) (ﬁpe—aplg*Hp ® [pé_aenv} ®M)U(n7—’ O)*
— log Ter eapﬁ*Hpﬁn (ﬁp e_apg*Hp)

Qlenv

— log Ter u*n(eapﬁ*Hp)Zn (ﬁp e—aplg*Hp)

Qeenv

— log Tryg, 0200 Ho/2f0 (om0 /25 o=aw" Ho/2) g0l /2
P

Qlenv

Again, the numben/ of interactions is now irrelevant and we may consider aabytr
values ofn. The commutation relation(2.2) impty’»Te~r = e~"'T so that, by

©.3),

eapﬁ*Hp/2E

Qenv

(=B Hp/2 A g=0B" Hp/2) qotp8" Hp 2

= elowtaen )y THAT 4 pyA + e (@vrtee)BET AT
= Loy tau (4).

It follows that

Gn(Qp, Ceny) =1og Tr IL7. () = log Tr 5, L3

Qp +env

(I) = nlogf(ay, + eny),
from which we conclude that
log E" [ea(ASP*"_ASE“V’”)} =nlog6(0) =0,
which proves Part 1, from which Part 2,
gn(a) = log E" [e*%] = log Tr 1L (py) = nlogf(a), (7.3)

immediately follows. Differentiation of the last identit o = 0 gives Part 3. Since
() is an entire function of such that(0) = 1, log #(«) is an analytic function of in

a complex neighborhood 6fand Part 4 follows from the Bryc theorem (sge [Bry]). The
Gartner-Ellis theorem directly applies to give Part 5. dHiyy the transient fluctuation
theorem Part 6 is a direct consequence of the symmiétry- o) = 0(«) (and hence of
time reversal invariance) which implies

logZIP’” [AS,,, = —s]e %e® = logZIP’” [AS,, = 5] ell=a)s
=gl —a) = gp(a) = logZP" [AS,, = s]e™,
and henc@" [AS,, = —s]e™* =P" [AS,,, = s|.
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7.2 Proof of Theorem3.3

We now consider the case whefe= X. The cumulant generating function of the
incrementA X, is given by Equ.[(712),

gn(n) =log Q" [e">¥"] =log Tr Lg (gpe ™" )e"¥.
Using the factorizatior? = 4™ o L1, we further get

gn () = log T L (72 e 42U (1)
_ log Tr(enX/Qgg(e—nX/Qﬁp e—nX/Q)enX/2) (e—nX/2eim'HpenXe—inTHpe—nX/Q)'

We note that™X Te X = e"T ande™ T*e™"X = ¢~"T* so that, by[[5)5),
N2 Lo(e7 X2 A e X2 XI2 — o7y TAT 4 poA + " TAT* = E_n/ﬁE(A).
It follows that
gu1) = 108 Tx L7 () (/20X o inry o =oX2)
Part 2 of Lemm@&gl1 yields the estimates
log C,; Tr L7, 51 (5p) ] < gu(n) < log Cy Tr L7 515(5,)1,

and sincelr £ ;0 (pp)] = Tr 5, L7 (1) = 0(—n/BE)", we finally get
1 B n 1
—gn(11) = log0 ( 6E) +0 (n) :

g(n) = lim lgn(n) = log 0 <—i) :

n—oo M

so that

which proves Part 1. Part 2 and Part 4 follow from the Gartlbs theorem while Part
3 follows from the Bryc theorem. Finally, the LDP implies

1, Q[ e[—q—6,—q+7]
lim ~ 1 n =— inf I(—x)+ inf I
oo © QA € [g—0,q+ 0] o s 1) ¥ 1)

and the fact that(—x) = I(x) + SEx leads to Part 5.
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