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Mixing for random dispersive PDEs: wave, KdV, Schrédinger and others?
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Outline of the presentation

0 Introduction and results

Shengquan Xiang Mixing for randomly NLS Cergy 2025 3/27



Turbulence and randomness

Statistical behaviors of Navier—Stokes equation:

Ou —vAu+u-Vu+ Vp=n“
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“Whether a random process has a unique attracting equilibrium?”

ou—vAu+u-Vu+ Vp=n

Definition (Mixing)
Markov process (u(t)) is mixing if
@ there is a unique invariant measure:

IpePX) st Du@®)=pn if D)) =un
@ convergence to this measure:
D(u(t)) > p as t—oo forany w(0) =wuo € X

If the convergence is exponential, then exponential mixing
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Quick review

Ou —vAu+u-Vu+ Vp=n
@ Full white noise:  Flandoli-Maslowski (1995)

n°(t) = bje;B;(t), e;: Fourier modes
j=1

@ Degenerate white noise:
E—Mattingly—Sinai (2001), Mattingly (2002), Kuksin—Shirikyan (2001)

1) = > biesB;(t), N =N(v)

Jj=1
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Quick review

Ou —vAu+u-Vu+ Vp=n“
@ Highly degenerate white noise: Hairer—Mattingly (2006, 2008, 2011)

4
n(t) = bje;Bs(t)
Jj=1
@ Highly degenerate bounded noise:  Kuksin—Nersesyan—Shirikyan (2020)
4
ne(t) = bie;& (t)
j=1
@ Localized bounded noise: Shirikyan (2015, 2021)

n*(t) = x(x) Z bje;&5 (1)
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Comparing with parabolic PDEs, few result to dispersive PDEs.

@ 3D damped wave, exponential mixing (Martirosyan 2014)
duu — Au+ adpu + [ul* “u =1, wo € H**
@ 1D damped NLS, polynomial mixing (Debussche—Odasso 2005)
e + Uze +iau — |ulP " u =0,z € (0,1)

@ Unique invariant measure: Tolomeo, Ekren, Kukavica, Ziane, et. al.
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Randomly forced waves

Randomly forced wave with localized damping:

Onu — Au + a(x)Oru + ud = xn“, x€DC R?
@ damping can be localized, (Duffing equation)
sharp Opx + ax + 00:x + ﬂ:cs = v cos(wt)
noise reduction, design
optimization

@ noise can be localized

acoustics, economy, radar

@ bounded noise

stochastic resonance, viscoelastic
noise-induced transition
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Main theorem (Liu-Wei-X.~Zhang-Zhao 2024)

Assume n* (t, z) is bounded in L°>° H?, statistically T-periodic.

Opu — Au + a(x)du + u® = xn®

Then 3! invariant measure y.. s.t. YV u[0] with law v € P(H)

ID(ult]) - pallz S 7 (1 + /H IIUIIQV(dv))

e Geometry condition: o Noise structure:
ne =n3 on [nT,(n+1)T)

n =225k bikbTke ok

a(x) > ap > 0near Ty
6)]'?,‘, indep bounded r.v.s

ej(x)ay(t) space-time modes
bjk #0 Vi k<N
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Main theorem (Chen—X.—Zhang-Zhao 2025)
Assume n* (t, ) is bounded in L™ H?, statistically T-periodic.
Ut + Uge + 1a(T)u — |u|p_1u =xn“

Then 3! invariant .. s.t. ¥ u(0) with law v € P(H*)

D) ~pli e (14 [ lolPuta)

@ first exponential mixing result
@ T! domain, p is odd
@ expo. mixing in H* with s > 1 also holds
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Outline of the presentation

e An improved probabilistic framework
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Idea for Navier-Stokes’ mixing

@ A probabilistic result:  Harris-type framework

@ Two deterministic properties:  stability, controllability
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Harris-type framework for Navier-Stokes

compactness

(RDS) Tn = F(mnflgnn) Wlth To = € X

Compact subset K
@ Compact absorbing set K:

Tz, €K, VYn>k

Navier-Stokes: a consequence of

smoothing
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Harris-type framework for Navier-Stokes

+ irreducibility
(RDS) Tn = F(wnfl,nn) Wlth To = € K

Compact subset K
Irreducibility . @ Irreducibility: stability property
For any € > 0, there exists n, p s.t.

P.([|zn|| <e)>p foranyz € K
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Global stability:
L(t) = f(x(t))
z(0) = zo

Can we find C > 0 and v > 0 such that for any initial condition z¢?

lz@)]l < Cllzolle "

Straightforward to 2D Navier-Stokes, but can be very challenging to other systems.
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Harris-type framework for Navier-Stokes

coupling condition

(RDS) Tn = F(wnfl,nn) Wlth To = € K

@ Coupling condition: keep converging
1 /
compedse B(|R - R'[| > 3lle —2'l)) < Cllz — |

Coupling where (R, R’) is a coupling of (z1,z})

condition

@ Coupling condition < control

Foias—Prodi (contraction)
Shirikyan (localized control)

@ Related: asymptotic strong Feller
Hairer—Mattingly (Malliavin calculus)
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Control problem

“If we can act on a system, what can we make it do?”

&(t) = f(z(t) +n(t)

OH + 0,(UH) =0,

OU + 0, (% + gH) — F(z, H,U) =0,
UH(t,0) = 1:(0),

UH(t, L) = :(1)

Control:  the dams — 7:(¢) and 72(¢) are controls that can be chosen
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A control property

Compare two trajectories z and z:

%j(t) — F(#() + h(D) with #(0) = o,
D2t = F@) + B +0(0)  with 2(0) = o,
Construct control 7: Foe .- ;

to make trajectories closer - <irolled

T e
‘_\r—/. z1
without control
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Comparing with parabolic PDEs, extra challenges to dispersive PDEs:

@ no compact absorbing set
@ delicate global stability analysis

@ loss of derivatives for controllability
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Compactness is required...

Controlled system:
i0u + Au+ ia(z)u — |ulP " u = h(t,z) + x PNt z), te][0,T)

where h = given force Zn = finite-dim. proj.

Let@ = H'"*-uncontrolled sol. (n = 0). Then ¥ u(0) € IT' closed to i(0), there is a
control n s.t.

lu(T) — a(T)|| < ellu(0) — @(0)]
with v = controlled sol.
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Compactness from dynamics of dispersive equations

. . . thi
@ Parabolic equation bounded domain "%, Compactness

Thanks to dynamical systems’ view

. . . dynamics . .
o Dlsperswe equatlons y—) Exponentlal asymptotlc compactness

% Expo. asymptotic compactness (AC): promoting regularity eventually

Example:  0uu— Au+adu=f withu[-] = (u,0u) € HE x L?

Exponential asymptotic compactness

There exists R > 0 s.t. u(t) converges to 3,,- (1) exponentially in 1" (not in H?1)
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An improved probabilistic framework

Theorem (Liu-Wei—X.~Zhang-Zhao 2024)

Expo. asymptotic compactness
Irreducibility on compact set —> Expo. mixing
Coupling condition on compact set

@ Asymptotic compactness:

Dynamics with force converge to a

Asymptotic
compact subset compactness

@ Irreducibility on compact set:
Stability property

@ Coupling condition on compact set: Compact set K

Control property Fyy(Pxy, 1)

Accessible set A(K)
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An improved probabilistic framework

Theorem (Liu-Wei—X.~Zhang-Zhao 2024,

Expo. asymptotic compactness
Irreducibility on compact set —> Expo. mixing + LDP
Coupling condition on compact set

@ Asymptotic compactness:

Dynamics with force converge to a

Asymptotic
compact subset compactness

@ Irreducibility on compact set:
Stability property

@ Coupling condition on compact set: Compact set K

Control property Fyy(Pxy, 1)

Accessible set A(K)
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Outline of the presentation

e Exponential mixing for NLS
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Part 1. Asymptotic compactness

| g 4 Uge 4+ da(x)u = |uP " u 4 f(t, 1),  ulimo = uo € H* |

Proposition (Chen-X.—Zhang-Zhao, 2025)
GivenR > 0 and o € (0,1/2), 3%+, C [1'"7 bounded, s.t.

dist ;1 (u(t), Br4o) < C(Jluollm)e™™,

foranyuo € H* and f € Bpeo 140 (R).
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Part 1. Asymptotic compactness

| g 4 Uge 4+ da(x)u = |uP " u 4 f(t, 1),  ulimo = uo € H* |

Proposition (Chen-X.—Zhang-Zhao, 2025)
Given R > 0 ando € (0,1/2), 3%14+. C [1' 7 bounded, s.t.

dist ;1 (u(t), Br4o) < C(Jluollm)e™™,

foranyuo € H* and f € Bpeo 140 (R).

Idea: Duhamel formula: (S, (t) =semigroup generated by 92 — a(x))
u(t) = S, uo—z/S (t — s)(Jul" " u(s) + f(s)) ds.

- Linear spectral gap (Rosier—Zhang 2009): ||Sa (t)uol|rr= < Ce™?*|luo|lms. v/
- Source term: || [ Sa(t — s)f(s)||g1+0 < CR [} e P ds < CR. v

- Nonlinear effect: [ Sa(t — s)(|ulP~'u)ds ?
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Bourgain space / restricted norm space

lullXes = IS(=t)u®)ll rp s =/Rz<k)28<7+k2>2blﬁ(ﬂ k)| dr.

kEZ

Heuristically, || fot So(t — s)(JuP" u) ds|| x1+06 < C|ulP™ ul| x140.6-1.
Question: Can we trade off spatial and temporal regularity
P

ul" ullx1ta-1 < Cllullfy, ?
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Bourgain space / restricted norm space

lullXes = IS(=t)u®)ll rp s =/RZ<1€)28<T+1€2>21’I11(T, k)| dr.

kEZ

Heuristically, || fot So(t — s)(JuP" u) ds|| x1+06 < C|ulP™ ul| x140.6-1.
Question: Can we trade off spatial and temporal regularity

ul”™ ullxrron-1 < Cllulfrs ?

Answer: No. Consider F(Jul*u)(k) = 3", _s, _p, 1k, @(k1)a(k2)a(ks).

Resonant terms k = k1 or k = ks sum up to ||ul|2u.
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Nonlinear smoothing

Luckily, NR(«) := (Non-resonant terms in |u|?~'u) behaves better:

Lemma (Erdogan—Giirel 2013, McConnell 2022, Chen—X.—~Zhang-Zhao 2025)
Leto € (0,1/2), b > 1/2, then for any u € X"°,

INR(w)l| x1+08-1 < Cllufl5a,,-

Key: Uniform bound on frequencies

<k>2(1+0)
" 2 *2 + 0, () k220D [, ()2

k=ki—ka+-+kp, NR

< o0
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Nonlinear smoothing

Luckily, NR(«) := (Non-resonant terms in |u|?~'u) behaves better:

Lemma (Erdogan—Giirel 2013, McConnell 2022, Chen—X.—~Zhang-Zhao 2025)
Leto € (0,1/2), b > 1/2, then for any u € X"°,

INR(w)l| x1+08-1 < Cllufl5a,,-

Key: Uniform bound on frequencies

<k>2(1+a')
e 2 R (C) RO T ()2

k=ki—ko+:+kp, N

< o0

Proposition (Nonlinear smoothing, Chen—X.—Zhang-Zhao 2025)
Leto € (0,1/2), then for any uo € H" andt > t(||uo|| 1),

lut) — €D S, (t)uo| zrire < C(R), 6(t) € R.

Idea: Resonance is removed by e~ (t, z), with appropriate choice of 6.
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Part 2: Stability property

|iut + Ugy + ta(z)u = |u|p_1u7 Ult=0 = ug € H°

(1) (Le Balc’h—Martin 2024) If uo € H* and p = 3 (cubic NLS), then

lu@)llen < Ce™ [[u(0)]] a1

(2) (Chen-X.—Zhang—Zhao 2025) Conclusion (1) holds for any odd p > 3.
Moreover, if s > 1 and uo € H®, then

lu(®)ll s < Clluollzrs)e™""

Difficulty: nonlinear observability inequality
T
/ / a(@)(ful® + [ue|* + [ul" ) dedt > CrEu(t)
0 T

Method: global Carleman estimate
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Part 3. Control property

10yl + Al +ia(x)t — |a|P e = f(t,x), d|i=o0 = To;
i0vu + Au+ia(x)u — |[ulPru = f(t,x) + xPrh(t,2),  ulimo = uo-

u: reference solution. u: controlled system. P proj. to first N modes.

Theorem (Chen-X.—Zhang-Zhao 2025)

LetT >0, R > 0. Assume ||ii|| o ;1 1~ < R, then for any uo € H', if
luo — 0| g2 < 1, then 3 control h € L2 [' "7 s.t.

u(T) = (Tl 51 < elluo — @oll ;1 -
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Frequency analysis

10w + Av + ia(z)v = X AP o + B2 P20 + x(z) P h(t, @)

It suffices to consider the linearized system: ||v(T)|| g1 < €||vo]| g1

Dehman-Lebeau: ‘“the energy of each scale of the control force depends
(almost) only on the energy of the same scale in the states that one wants
to control.”

Low-frequency control
Given m € N, then 3N e N and control h € L?2H " s.t.

Pono(T) = 0.

Idea: Invoke full-frequency null controllability by Laurent (2010).
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High-frequency dissipation

10w + Av + da(z)v = B2 AP o + B PP et

Spectral gap:

High-frequency dissipation
If ||| poo 110 < R, then 3m € Ns.t.

[I(T = Pm)o(T)| 2 < ellvol| g -

Idea: exponential asymptotic compactness
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Influence of control on high frequency

How to balance between
- High-frequency dissipation: h = 0, ||(I — P )v(T)|| g1 < €llvo| g1
- Low-frequency control: h € L>H*, Pnv(T) =0

Hi-freq. Hi-freq.
Vo U(T) Vo
v(T)
Low-freq. Low-freq.
h=0 he L?H*

Difficulty: Control h € L> H" can ruin high-frequency dissipation
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Squeezing in high-low frequency

Hi-freq. Hi-freq. Hi-freq.
Vo v (T) Vo Vo
v(T) o)
Low-freq. Low-freq. Low-freq.
h=0 he L*H' heL*H' v

Theorem (Chen-X.—Zhang-Zhao)

If ||| oo g1+« < R, then 3m € N and control ¢ € L* 17, such that

[ Pmv(T)l| 1 < ellvollgs and [|(I — Prm)o(T)|| g < ellvol| g
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A framework

expo. asymptotic compactness
irreducibility on compact set = expo. mixing + LDP
coupling condition on compact set

Exponential mixing
(NLW) Onu — Au + a(x)Oru + ud = xn“, x€DC R?
(NLS) i0pu 4+ Au+ ia(z)u — [ulfru=xn", zeT

Features:
@ noise can be localized
@ damping can be localized, sharp
@ general nonlinearity
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Thank you!
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