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Motivation

Mixing for random dispersive PDEs: wave, KdV, Schrödinger and others?
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Outline of the presentation

1 Introduction and results
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3 Exponential mixing for NLS
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Turbulence and randomness
Statistical behaviors of Navier–Stokes equation:

∂tu− ν∆u+ u · ∇u+∇p = ηω
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“Whether a random process has a unique attracting equilibrium?”

∂tu− ν∆u+ u · ∇u+∇p = ηω

Definition (Mixing)

Markov process (u(t)) is mixing if

➀ there is a unique invariant measure:

∃ ! µ ∈ P(X) s.t. D(u(t)) = µ if D(u(0)) = µ

➁ convergence to this measure:

D(u(t)) → µ as t → ∞ for any u(0) = u0 ∈ X

If the convergence is exponential, then exponential mixing
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Quick review

∂tu− ν∆u+ u · ∇u+∇p = ηω

Full white noise: Flandoli–Maslowski (1995)

ηω(t) =
∞∑
j=1

bjejβj(t), ej : Fourier modes

Degenerate white noise:

E–Mattingly–Sinai (2001), Mattingly (2002), Kuksin–Shirikyan (2001)

ηω(t) =

N∑
j=1

bjejβj(t), N = N(ν)
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Quick review

∂tu− ν∆u+ u · ∇u+∇p = ηω

Highly degenerate white noise: Hairer–Mattingly (2006, 2008, 2011)

ηω(t) =

4∑
j=1

bjejβj(t)

Highly degenerate bounded noise: Kuksin–Nersesyan–Shirikyan (2020)

ηω(t) =

4∑
j=1

bjejξ
ω
j (t)

Localized bounded noise: Shirikyan (2015, 2021)

ηω(t) = χ(x)
N∑

j=1

bjejξ
ω
j (t)
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Comparing with parabolic PDEs, few result to dispersive PDEs.

3D damped wave, exponential mixing (Martirosyan 2014)

∂ttu−∆u+ a∂tu+ |u|2−εu = ηω, u0 ∈ H1+ε

1D damped NLS, polynomial mixing (Debussche–Odasso 2005)

iut + uxx + iau− |u|p−1u = ηω, x ∈ (0, 1)

Unique invariant measure: Tolomeo, Ekren, Kukavica, Ziane, et. al.
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Randomly forced waves

Randomly forced wave with localized damping:

∂ttu−∆u+ a(x)∂tu+ u3 = χηω , x ∈ D ⊂ R3

damping can be localized,
sharp
noise reduction, design
optimization

noise can be localized
acoustics, economy, radar

bounded noise
stochastic resonance, viscoelastic
noise-induced transition

(Duffing equation)

∂ttx+ αx+ δ∂tx+ βx3 = γ cos(ωt)
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Main theorem (Liu–Wei–X.–Zhang–Zhao 2024)
Assume ηω(t, x) is bounded in L∞H2, statistically T -periodic.

∂ttu−∆u+ a(x)∂tu+ u3 = χηω

Then ∃ ! invariant measure µ∗ s.t. ∀u[0] with law ν ∈ P(H)

∥D(u[t])− µ∗∥∗L ≲ e−γt

(
1 +

∫
H
∥v∥2ν(dv)

)

• Geometry condition:

a(x) ≥ a0 > 0 near Γ0

• Noise structure:

ηω = ηωn on [nT, (n+ 1)T )

ηωn =
∑

j,k bjkθ
n
jkejαk

θnjk indep bounded r.v.s

ej(x)αk(t) space-time modes
bjk ̸= 0 ∀ j, k ≤ N
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Main theorem (Chen–X.–Zhang–Zhao 2025)
Assume ηω(t, x) is bounded in L∞H2, statistically T -periodic.

iut + uxx + ia(x)u− |u|p−1u = χηω

Then ∃ ! invariant µ∗ s.t. ∀u(0) with law ν ∈ P(H1)

∥D(u[t])− µ∗∥∗L ≲ e−γt

(
1 +

∫
H1

∥v∥2ν(dv)
)

first exponential mixing result

T1 domain, p is odd

expo. mixing in Hs with s > 1 also holds
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Outline of the presentation

1 Introduction and results

2 An improved probabilistic framework

3 Exponential mixing for NLS
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Idea for Navier-Stokes’ mixing

A probabilistic result: Harris-type framework

Two deterministic properties: stability, controllability
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Harris-type framework for Navier-Stokes

compactness + irreducibility + coupling condition

(RDS) xn = F (xn−1, ηn) with x0 = x ∈ X

Compact absorbing set K:

xn ∈ K, ∀n ≥ k

Navier-Stokes: a consequence of

smoothing
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Harris-type framework for Navier-Stokes

compactness + irreducibility + coupling condition

(RDS) xn = F (xn−1, ηn) with x0 = x ∈ K

Irreducibility: stability property

For any ε > 0, there exists n, p s.t.

Px(∥xn∥ ≤ ε) ≥ p for any x ∈ K
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Global stability: {
ẋ(t) = f(x(t))

x(0) = x0

Can we find C > 0 and γ > 0 such that for any initial condition x0?

∥x(t)∥ ≤ C∥x0∥e−γt

Straightforward to 2D Navier-Stokes, but can be very challenging to other systems.

Shengquan Xiang Mixing for randomly NLS Cergy 2025 13 / 27



Harris-type framework for Navier-Stokes

compactness + irreducibility + coupling condition

(RDS) xn = F (xn−1, ηn) with x0 = x ∈ K

Coupling condition: keep converging

P(∥R −R′∥ >
1

2
∥x− x′∥) ≤ C∥x− x′∥

where (R,R′) is a coupling of (x1, x
′
1)

Coupling condition ⇐ control

Foias–Prodi (contraction)
Shirikyan (localized control)

Related: asymptotic strong Feller
Hairer–Mattingly (Malliavin calculus)
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Control problem

“If we can act on a system, what can we make it do?”

ẋ(t) = f(x(t)) + η(t)

−→


∂tH + ∂x(UH) = 0,

∂tU + ∂x(
U2

2
+ gH)− F (x,H,U) = 0,

UH(t, 0) = η1(t),

UH(t, L) = η2(t)

Control: the dams → η1(t) and η2(t) are controls that can be chosen
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A control property

Compare two trajectories x̃ and x:

d

dt
x̃(t) = f(x̃(t)) + h(t) with x̃(0) = x̃0,

d

dt
x(t) = f(x(t)) + h(t) + η(t) with x(0) = x0,

Construct control η:

to make trajectories closer
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Comparing with parabolic PDEs, extra challenges to dispersive PDEs:

no compact absorbing set

delicate global stability analysis

loss of derivatives for controllability
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Compactness is required...

Controlled system:

i∂tu+∆u+ ia(x)u− |u|p−1u = h(t, x) + χPNη(t, x), t ∈ [0, T ]

where h = given force PN = finite-dim. proj.

Theorem
Let ũ = H1+s-uncontrolled sol. (η ≡ 0). Then ∀u(0) ∈ H1 closed to ũ(0), there is a
control η s.t.

∥u(T )− ũ(T )∥ ≤ ε∥u(0)− ũ(0)∥
with u = controlled sol.
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Compactness from dynamics of dispersive equations

Parabolic equation bounded domain
smoothing−−−−−−→ Compactness

Thanks to dynamical systems’ view

Dispersive equations
dynamics−−−−−→ Exponential asymptotic compactness

⋆ Expo. asymptotic compactness (AC): promoting regularity eventually

Example: ∂ttu−∆u+ a∂tu = f with u[·] = (u, ∂tu) ∈ H1
0 × L2

Exponential asymptotic compactness
There exists R > 0 s.t. u(t) converges to BH2(R) exponentially in H1 (not in H2!)
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An improved probabilistic framework

Theorem (Liu–Wei–X.–Zhang–Zhao 2024)
Expo. asymptotic compactness

Irreducibility on compact set
Coupling condition on compact set

 =⇒ Expo. mixing

Asymptotic compactness:
Dynamics with force converge to a
compact subset

Irreducibility on compact set:
Stability property

Coupling condition on compact set:

Control property
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Part 1. Asymptotic compactness

iut + uxx + ia(x)u = |u|p−1u+ f(t, x), u|t=0 = u0 ∈ H1

Proposition (Chen–X.–Zhang–Zhao, 2025)

Given R > 0 and σ ∈ (0, 1/2), ∃B1+σ ⊂ H1+σ bounded, s.t.

distH1(u(t),B1+σ) ≤ C(∥u0∥H1)e−κt,

for any u0 ∈ H1 and f ∈ BL∞H1+σ (R).

Idea: Duhamel formula: (Sa(t) =semigroup generated by i∂2
x − a(x))

u(t) = Sa(t)u0 − i

∫ t

0

Sa(t− s)(|u|p−1u(s) + f(s)) ds.

- Linear spectral gap (Rosier–Zhang 2009): ∥Sa(t)u0∥Hs ≤ Ce−βt∥u0∥Hs . ✓

- Source term: ∥
∫ t

0
Sa(t− s)f(s)∥H1+σ ≤ CR

∫ t

0
e−β(t−s) ds ≤ CR. ✓

- Nonlinear effect:
∫ t

0
Sa(t− s)(|u|p−1u) ds ?
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Bourgain space / restricted norm space

∥u∥2Xs,b := ∥S(−t)u(t)∥Hb
tH

s
x
=

∫
R

∑
k∈Z

⟨k⟩2s⟨τ + k2⟩2b|û(τ, k)|2 dτ.

Heuristically, ∥
∫ t

0
Sa(t− s)(|u|p−1u) ds∥X1+σ,b ≤ C∥|u|p−1u∥X1+σ,b−1 .

Question: Can we trade off spatial and temporal regularity

∥|u|p−1u∥X1+σ,b−1 ≤ C∥u∥p
X1,b ?

Answer: No. Consider F(|u|2u)(k) =
∑

k=k1−k2+k3
û(k1)û(k2)û(k3).

Resonant terms k = k1 or k = k3 sum up to ∥u∥2L2u.

Shengquan Xiang Mixing for randomly NLS Cergy 2025 19 / 27



Bourgain space / restricted norm space

∥u∥2Xs,b := ∥S(−t)u(t)∥Hb
tH

s
x
=

∫
R

∑
k∈Z

⟨k⟩2s⟨τ + k2⟩2b|û(τ, k)|2 dτ.
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Nonlinear smoothing

Luckily, NR(u) := (Non-resonant terms in |u|p−1u) behaves better:

Lemma (Erdoğan–Gürel 2013, McConnell 2022, Chen–X.–Zhang–Zhao 2025)

Let σ ∈ (0, 1/2), b > 1/2, then for any u ∈ X1,b,

∥NR(u)∥X1+σ,b−1 ≤ C∥u∥p
X1,b .

Key: Uniform bound on frequencies

sup
k

 ∑
k=k1−k2+···+kp, NR

⟨k⟩2(1+σ)

⟨k2 +
∑p

l=1(−1)lk2
l ⟩2(1−b)

∏p
l=1⟨kl⟩2

 < ∞

Proposition (Nonlinear smoothing, Chen–X.–Zhang–Zhao 2025)

Let σ ∈ (0, 1/2), then for any u0 ∈ H1 and t ≥ t(∥u0∥H1),

∥u(t)− eiθ(t)Sa(t)u0∥H1+σ ≤ C(R), θ(t) ∈ R.

Idea: Resonance is removed by e−iθ(t)u(t, x), with appropriate choice of θ.
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Part 2: Stability property

iut + uxx + ia(x)u = |u|p−1u, u|t=0 = u0 ∈ Hs

Theorem
(1) (Le Balc’h–Martin 2024) If u0 ∈ H1 and p = 3 (cubic NLS), then

∥u(t)∥H1 ≤ Ce−βt∥u(0)∥H1 .

(2) (Chen–X.–Zhang–Zhao 2025) Conclusion (1) holds for any odd p > 3.
Moreover, if s ≥ 1 and u0 ∈ Hs, then

∥u(t)∥Hs ≤ C(∥u0∥Hs)e−β′t.

Difficulty: nonlinear observability inequality∫ T

0

∫
T
a(x)(|u|2 + |ux|2 + |u|p+1) dxdt ≥ CTEu(t)

Method: global Carleman estimate
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Part 3. Control property

i∂tũ+∆ũ+ ia(x)ũ− |ũ|p−1ũ = f(t, x), ũ|t=0 = ũ0;
i∂tu+∆u+ ia(x)u− |u|p−1u = f(t, x) + χPNh(t, x), u|t=0 = u0.

ũ: reference solution. u: controlled system. PN : proj. to first N modes.

Theorem (Chen–X.–Zhang–Zhao 2025)
Let T > 0, R > 0. Assume ∥ũ∥L∞H1+σ < R, then for any u0 ∈ H1, if
∥u0 − ũ0∥H1 ≪ 1, then ∃ control h ∈ L2H1+σ s.t.

∥u(T )− ũ(T )∥
H1 ≤ ε∥u0 − ũ0∥

H1 .
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Frequency analysis

i∂tv +∆v + ia(x)v = p+1
2

|ũ|p−1v + p−1
2

|ũ|p−3ũ2v̄ + χ(x)PNh(t, x)

It suffices to consider the linearized system: ∥v(T )∥H1 ≤ ε∥v0∥H1

Dehman–Lebeau: “the energy of each scale of the control force depends
(almost) only on the energy of the same scale in the states that one wants
to control.”

Low-frequency control
Given m ∈ N, then ∃N ∈ N and control h ∈ L2H1 s.t.

Pmv(T ) = 0.

Idea: Invoke full-frequency null controllability by Laurent (2010).
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High-frequency dissipation

i∂tv +∆v + ia(x)v = p+1
2

|ũ|p−1v + p−1
2

|ũ|p−3ũ2v̄

Spectral gap:

×
×
×
×

×
×
×
×

ũ = 0

×
×

×
×

×
×

×
×

ũ ∈ L∞H1

×
×

×
×

×
×

×
×

ũ ∈ L∞H1+σ: Hi-freq.

High-frequency dissipation
If ∥ũ∥L∞H1+σ ≤ R, then ∃m ∈ N s.t.

∥(I − Pm)v(T )∥H1 ≤ ε∥v0∥H1 .

Idea: exponential asymptotic compactness
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Influence of control on high frequency

How to balance between

- High-frequency dissipation: h = 0, ∥(I − Pm)v(T )∥H1 ≤ ε∥v0∥H1

- Low-frequency control: h ∈ L2H1, Pmv(T ) = 0

Hi-freq.

Low-freq.

v0

v(T )

h = 0

Hi-freq.

Low-freq.

v0
v(T )

h ∈ L2H1

Difficulty: Control h ∈ L2H1 can ruin high-frequency dissipation

Shengquan Xiang Mixing for randomly NLS Cergy 2025 25 / 27



Squeezing in high-low frequency

Hi-freq.

Low-freq.

v0

v(T )

h = 0

Hi-freq.

Low-freq.

v0
v(T )

h ∈ L2H1

Hi-freq.

Low-freq.

v0

v(T )

h ∈ L2H1+σ ✓

Theorem (Chen–X.–Zhang–Zhao)
If ∥ũ∥L∞H1+σ ≤ R , then ∃m ∈ N and control ξ ∈ L2H1+σ, such that

∥Pmv(T )∥H1 ≤ ε∥v0∥H1 and ∥(I − Pm)v(T )∥H1 ≤ ε∥v0∥H1 .
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A framework
expo. asymptotic compactness

irreducibility on compact set
coupling condition on compact set

 =⇒ expo. mixing + LDP

Exponential mixing
(NLW) ∂ttu−∆u+ a(x)∂tu+ u3 = χηω , x ∈ D ⊂ R3

(NLS) i∂tu+∆u+ ia(x)u− |u|p−1u = χηω, x ∈ T

Features:

noise can be localized

damping can be localized, sharp

general nonlinearity
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Thank you!
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