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Introduction
Q: How to find the spectrum of a tight-binding operator on a quasicrystaline lattice?

Penrose tiling Ammann-Beenker tiling



Introduction
The following figures are from Terry Loring’s paper
Bulk spectrum and K-theory for infinite-area topological quasicrystals, JMP 2019.

He numerically computes eigenvalues and eigenfunctions of the px + ipy -thight-binding
model on finite patches of the Ammann-Beenker tiling: For nearest neighbours the
hoppings are

Hxy = −tσ3 − ∆
2 cos(αxy )σ1 − i ∆

2 sin(αxy )σ2

and with on-site term
Hxx = −µσ3 .

Here t, µ,∆ ∈ R and αxy is the signed angle between the line xy and the horizontal axis.

His goal is to understand the spectrum of the Hamiltonian on the infinite aperiodic
domain within a parameter range in which the model is expected to exhibit topological
non-triviality, where edge states lead to spectral pollution when the domain is restricted to
a finite size.
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Introduction (figures from T. Loring)

Bulk eigenfunctions at radius 15 and radius 40.
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Edge eigenfunctions at radius 15 and radius 40.
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But also eigenfunctions that are neither clearly bulk nor clearly edge states appear at all
scales.
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Upper bound to the distance of the spectrum of the infinite volume operator obtained
from computing eigenvalues on a finite sample.



Introduction (figures from T. Loring)
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FIG. 13. Approximate eigenvalues for the finite system; radius is 100. Found with the localizer method, with ω = 0.001. (a) Approximate eigenvalue 0.66. (b) Approximate
eigenvalue 4.8.

most inner eigenvalues are close to ±0.604. Making this a more rigorous claim will require new results about the spectral localizer when used
in quasiperiodic conditions. It would make sense that someone do the analytic work to get a solid estimate of the radius of this gap, which is⌜H⌐1QC⌜⌐1. The advantage of the present method is it runs in only a few days on a computing cluster and should give an estimate in a reasonable
time for other noncrystalline systems.

FIG. 14. (a) shows the upper bound on the distance to the bulk spectrum via approximate eigenvalues that were found by localizer method. (b) is zoomed in to clarify possible
small gaps. The local peak at ϵ = 0.081 was computed as approximately 0.021. The left-most local minimum occurs at ϵ = 0.604. The right-most local minimum occurs
at ϵ = 6.222.
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Upper bound obtained from his new spectral localizer method.
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Introduction (Colbrook et al. continued)

One application in their paper is the Hofstadter Hamiltonian on the hexagonal lattice.
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In Hege, Moscolari, T., Math. of Comp.
2025 we show that the spectrum of
“short-range” thight-binding models is
computable with explicit error control under
the additional assumption of finite local
complexity (flc).

Applying this algorithm to the
px + ipy -model on the Ammann-Beenker
tiling allows us to prove, for example, that
the spectral gap at 0.804, which was
conjectured by Loring to be “a mirage”,
remains open in the infinite system.
We also proved a number of gaps for the
Hofstadter model on the Ammann-Beenker
tiling.

HEGE, MOSCOLARI, AND TEUFEL PHYSICAL REVIEW B 106, 155140 (2022)

FIG. 3. The Hofstadter butterfly of the magnetic Laplacian on the
Ammann-Beenker tiling with some points selected for investigation
using our method.

for ‖x − y‖2 ! 1, and Hxy = 0 otherwise. Here σ1, σ2, σ3 are
Pauli matrices, µ," ∈ R and αxy is the signed angle between
the edge xy and the e1 axis.

For µ very large, this Hamiltonian can be considered as a
small perturbation of µσ3, thus its spectrum has a gap around
0, without edge states when restricted to finite domains. As
µ decreases, the gap eventually closes and the system is
expected to undergo a quantum phase transition into a topo-
logically nontrivial phase. This topological regime has been
studied in [11]. Employing computational K theory, convinc-
ing evidence was found that a large gap around zero indeed
reopens. But the numerical data also suggested a second small
gap might open. In the absence of a decisive criterion, the
author had to leave open whether this gap persists in the
thermodynamic limit [11, p. 9]. Using our method, we could
prove that there really is a small second gap around energy
0.804 in the infinite system.

As a second example, we applied our method to the Hofs-
tadter model on the Ammann-Beenker tiling. In the symmetric
gauge, the matrix elements of the Hofstadter Hamiltonian
are Hxy = eib det(x,y) for ‖x − y‖2 ! 1, and Hxy = 0 other-
wise, where b ∈ R denotes the strength of the magnetic field
perpendicular to the tiling. It was previously observed that
patterns related to the Hofstadter butterfly also emerge in qua-
sicrystalline systems [36–38]. We approximated the density
of states of the Hofstadter butterfly (see Fig. 3) by diago-
nalization of a finite system and created a set of possible
gap locations by taking all local minima of a kernel density

FIG. 4. Comparison of our lower bound for the distance to spec-
trum (for L = 50) to the upper bound computed with the method
of [12]. We computed both bounds for 50 equally spaced ener-
gies in the Hofstadter model at a constant magnetic field b = 1.
The combination of these bounds allows us to bound the extent of
the spectral gap containing energy 1.5. The endpoints of the gap
must be contained in the lighter shaded areas around energies 1.2
and 1.82.

estimate with bandwidth 0.1 of the spectra. In this way we
generated 187 combinations of magnetic field and energy
where a gap might be expected. Applying our algorithm with
L = 50, we could show for 44 of these points that there is
a spectral gap in the infinite system, increasing to 49 points
with L = 100. For L = 50, this required checking 15 139 local
patches, while for L = 100, we had |CL| = 60 601.

IV. COMPUTATIONAL COMPLEXITY OF
SPECTRAL COMPUTATIONS

We computed a cross section of our lower bound on the
distance to the spectrum at different energies for a fixed mag-
netic field, see Fig. 4. Comparing our lower bound to the
upper bound in [12] shows that the curves are similar and
increase linearly towards the center of the gap. Both estimates
approximate the distance to the spectrum well. See Fig. 5
in the Appendix for a similar plot for the Fibonacci crys-
tal, showing multiple gaps. The combination of both bounds
yields rigorous and precise information on the positions of the
edge of the spectral gap.

This should be compared to the no-go theorem of [12] that
an algorithm with two-sided error control (see Appendix D,
Definition 3) for general Hermitian operators on a given
Hilbert space does not exist. While the precise formulation
of this no-go theorem requires some preparation and is given
only in Appendix D, the basic idea is easily explained. An
algorithm with two-sided error control has as input a Hamil-
tonian H from a certain set $ of Hamiltonians and an error
margin. It is supposed to return a subset of the reals that ap-
proximates the spectrum σ (H ) within the given error margin
in Hausdorff distance.

It also needs to be specified which properties of the Hamil-
tonian the algorithm can access directly. In the setting of the
no-go theorem, it can access the matrix elements Hi j of H
with respect to some orthonormal basis (ei )i∈N . Of course any
algorithm that stops after finite time can evaluate only finitely
many matrix elements. Now it is clear that no such algorithm
can, for example, after having evaluated a finite number of

155140-4
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The setting: short-range discrete operators
Definition
A subset Γ ⊂ Rn is called uniformly discrete if there exists q > 0, the packing radius, such
that d(x , y) ≥ q for all x , y ∈ Γ with x 6= y . Here and in the following d(·, ·) denotes the
maximum distance and Br (x) the corresponding open “ball” of radius r > 0 around x ∈ Rn.

Definition
A discrete operator H in dimension n ∈ N is a bounded operator on a seperable Hilbert
space H, together with an orthonormal basis (ex)x∈Γ indexed by a uniformly discrete subset
Γ ⊂ Rn. Its matrix elements at points x , y ∈ Γ are Hxy := 〈ex ,Hey 〉.
We say that a discrete operator H in dimension n ∈ N is short-range, if there exist C , ε > 0
such that

|Hxy | ≤ C d(x , y)−(n+ε) for all x , y ∈ Γ.

It has finite range m > 0 if
d(x , y) > m ⇒ Hxy = 0 .
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The setting: finite local complexity (flc)
Definition
For a discrete operator H two sets A,B ⊂ Γ are said to be equivalent w.r.t. the action of
H, if there is a t ∈ Rn such that B = A + t and if there exists U : A→ S1 ⊂ C such that
for all a1, a2 ∈ A it holds that

Hb1b2 = U(a1)Ha1a2U(a2)∗ ,

where b1 = a1 + t and b2 = a2 + t.

Definition
A discrete operator H is said to have finite local complexity (flc) if for any L > 0 the set
of subsets

{Γ ∩ BL(x) | x ∈ Rn}
is contained in finitely many equivalence classes with respect to equivalent action.
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The (flc) spectral problem is solvable with explicit error control
Definition
The flc spectral problem is the computational problem (Ω,Λ, (M, dH),Ξ), where
I Ω is the set of normal discrete operators with (flc) and short-range;
I Λ is a family of evaluation functions (fi )i∈I satisfying . . . ;
I M is the set of all compact subsets of C and dH the Hausdorff distance;
I Ξ is the map which assigns to every operator H its spectrum, Ξ(H) = Spec(H).

Theorem (Hege, Moscolari, T., MOC 2025)

Let (Ω,Λ, (M, dH),Ξ) be the flc spectral problem. Then for every k ∈ N there exists
a Blum-Shub-Smale (BSS) algorithm Γk : Ω → M, using the family Λ of evaluation
functions, such that

dH(Γk(H),Ξ(H)) ≤ 2−k

for all H ∈ Ω.
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The lower norm function and quasi-modes
The key steps in the proof are upper and lower bounds on the lower norm function

ρH : C→ [0,∞) , λ 7→ ρH(λ) := inf
ψ∈H\{0}

‖(H − λ)ψ‖
‖ψ‖ .

It is also used to define the δ-pseudospectrum of an operator H as

Specδ(H) := {λ ∈ C | ρH(λ) ≤ δ} .

Any ψ ∈ H \ {0} that satisfies ‖(H − λ)ψ‖ ≤ δ‖ψ‖ is called an δ-quasi-mode.

For normal operators H it holds that

ρH(λ) = d(λ, Spec(H))

and for general operators one still has

ρH(λ) ≤ d(λ, Spec(H)) .



The lower norm function and quasi-modes
The key steps in the proof are upper and lower bounds on the lower norm function

ρH : C→ [0,∞) , λ 7→ ρH(λ) := inf
ψ∈H\{0}

‖(H − λ)ψ‖
‖ψ‖ .

It is also used to define the δ-pseudospectrum of an operator H as

Specδ(H) := {λ ∈ C | ρH(λ) ≤ δ} .

Any ψ ∈ H \ {0} that satisfies ‖(H − λ)ψ‖ ≤ δ‖ψ‖ is called an δ-quasi-mode.

For normal operators H it holds that

ρH(λ) = d(λ, Spec(H))

and for general operators one still has

ρH(λ) ≤ d(λ, Spec(H)) .



The lower norm function and quasi-modes
The key steps in the proof are upper and lower bounds on the lower norm function

ρH : C→ [0,∞) , λ 7→ ρH(λ) := inf
ψ∈H\{0}

‖(H − λ)ψ‖
‖ψ‖ .

It is also used to define the δ-pseudospectrum of an operator H as

Specδ(H) := {λ ∈ C | ρH(λ) ≤ δ} .

Any ψ ∈ H \ {0} that satisfies ‖(H − λ)ψ‖ ≤ δ‖ψ‖ is called an δ-quasi-mode.

For normal operators H it holds that

ρH(λ) = d(λ, Spec(H))

and for general operators one still has

ρH(λ) ≤ d(λ, Spec(H)) .



The lower norm function and quasi-modes
The key steps in the proof are upper and lower bounds on the lower norm function

ρH : C→ [0,∞) , λ 7→ ρH(λ) := inf
ψ∈H\{0}

‖(H − λ)ψ‖
‖ψ‖ .

It is also used to define the δ-pseudospectrum of an operator H as

Specδ(H) := {λ ∈ C | ρH(λ) ≤ δ} .

Any ψ ∈ H \ {0} that satisfies ‖(H − λ)ψ‖ ≤ δ‖ψ‖ is called an δ-quasi-mode.

For normal operators H it holds that

ρH(λ) = d(λ, Spec(H))

and for general operators one still has

ρH(λ) ≤ d(λ, Spec(H)) .



Uneven sections and the upper bound
Following Colbrook et al. we use so called uneven local sections to avoid spectral pollution.

Definition
Let H be a discrete operator with finite range m, let x ∈ Rn, L > 0, and λ ∈ C. The
uneven section for these data is the rectangular matrix

QL,λ,x : HBL(x) → HBL+m(x) , QL,λ,x(ψ) := 1BL+m(x)(H − λ)1BL(x)ψ ,

where HBL(x) := span{ey | y ∈ BL(x) ∩ Γ}.

Theorem: The upper bound
Let H be a discrete operator with finite range m, and let λ ∈ C, L > 0, and x ∈ Rn be
arbitrary. Let

εL,λ,x := s1(QL,λ,x)

be the smallest singular value of QL,λ,x . Then

ρH(λ) ≤ εL,λ,x .
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Proof of the upper bound
Theorem: The upper bound
Let H be a discrete operator with finite range m, and let λ ∈ C, L > 0, and x ∈ Rn be
arbitrary. Let

εL,λ,x := s1(QL,λ,x)

be the smallest singular value of QL,λ,x . Then
ρH(λ) ≤ εL,λ,x .

Proof: The singular value decomposition allows us to write

QL,λ,x = USV ∗ =
k∑

i=1

|ui 〉si 〈vi | ,

where (ui )i=1,...,k are the first k columns of U, (vi )i=1,...,k the columns of V , and
(si )i=1,...,k the diagonal elements of S .

Then

(H − λ)v1 = (H − λ)1BL(x)v1 = 1BL+m(x)(H − λ)1BL(x)v1 = QL,λ,xv1 = s1u1 .

Hence, ‖(H − λ)v1‖ = s1‖u1‖ = s1.
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The lower bound

Theorem: The lower bound
Let H be a discrete operator with finite range m, L > m, and λ ∈ C. Set

εL,λ := inf
x∈Rn

εL,λ,x

and M := supx ,y∈Γ |Hxy |. Then

ρH(λ) ≥ εL,λ − C
L with C := mM

(
36m
q

)n/2
.

Strategy of the proof: Show that if H has a δ-quasi-mode ψ at some energy λ, then it
must be detectable on sufficiently large scales L > m, i.e. that a suitable restriction of ψ
to a suitable box BL(x) is a δ + C

L -quasi-mode.
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Proof of the lower bound
For x ∈ Rn and L > 0 define the tent function VL,x : Rn → R with Lipschitz const. 1

L by

VL,x(y) := max

(
0, 1− ‖x − y‖

L

)
.

Lemma 1
For all ψ ∈ H we have∫

x∈Rn

‖[VL,x ,H]ψ‖2H dxn ≤ m2M2

L2

(
36m
q

)n

‖VL,0‖2L2(Rn)‖ψ‖2H

Lemma 2
Assume that ψ ∈ H is a δ-quasi-mode of H at λ ∈ C. Then there exists x ∈ Rn such that

‖(H − λ)VL,xψ‖ ≤
(
δ + C

L

)
‖VL,xψ‖

and thus
εL,λ ≤ εL,λ,x ≤ δ + C

L .
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Proof of Lemma 2 continued

∫
Rn

‖(H − λ)VL,xψ‖2H dxn =
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Thus, there exists x ∈ Rn such that ‖(H − λ)VL,xψ‖H ≤
(
δ + C

L

)
‖VL,xψ‖H.

Since ψ̃ := VL,xψ is supported in BL(x) we obtain

‖QL,λ,x ψ̃‖H = ‖(H − λ)ψ̃‖H ≤
(
δ + C

L

)
‖ψ̃‖H ,

and hence εL,λ ≤ εL,λ,x ≤ δ + C
L .



Proof of the lower bound

Proof of the lower bound: Let λ ∈ C. For any δ > ρH(λ), by definition of the lower
norm function, there exists a δ-quasi-mode ψ ∈ H, i.e.

‖(H − λ)ψ‖ ≤ δ‖ψ‖ .

By Lemma 2 we have
εL,λ ≤ δ + C

L .

As this holds for all δ > ρH(λ), we obtain

εL,λ − C
L ≤ ρH(λ) .
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Computability of the (pseudo-)spectrum for flc-operators

Assuming that for an flc-operator H one can find an algorithm that yields all finitely many
inequivalent realizations (QL,λ,i )

k
i=1 of QL,λ,x at a given spectral value λ ∈ C and scale L,

one can (numerically) compute

εL,λ = inf
x∈Rn

εL,λ,x = min
i=1,...,k

s1(QL,λ,i ) .



Example: the 1d -Fibonacci crystal

Let Γ = Z and

(Hψ)(j) = −ψ(j−1)−ψ(j+1)+λV (j)ψ(j)

be the discrete Laplacian with an
aperiodic potential, where V (j) is
either 0 or 1 according to the jth
letter in the Fibonacci string.

FINDING SPECTRAL GAPS IN QUASICRYSTALS PHYSICAL REVIEW B 106, 155140 (2022)

FIG. 5. Upper and lower bounds for the distance to the spectrum for the Fibonacci Hamiltonian for L = 500, N = 6, α = 1. The transparent
blue intervals display the minimal and maximal sizes (defined as in Fig. 4) of the gaps centered around the local maxima of the lower bound.
For the Fibonacci quasicrystal, multiple gaps can be seen and proven to exist. As L → ∞, the number of gaps will grow as the spectrum of
the infinite Hamiltonian is a Cantor set.

checking the condition of Propositon 1 on each of them using
Algorithm 3. The loop in line 4 can be performed on different
computer nodes if necessary.

APPENDIX C: APPLICATION TO ONE-
DIMENSIONAL SYSTEMS

The Fibonacci quasicrystal is a simple one-dimensional
quasicrystal that was studied even prior to the discovery of
physical quasicrystals [42,43]. In recent years, significant at-
tention has been devoted to the mathematical rigorous study
of the spectrum of the Hamiltonian associated to the Fibonacci
quasicrystals [44–46] and also of its generalization for contin-
uum Schrödinger operators [47,48]. In particular, it has been
proved that the spectrum of the Fibonacci Hamiltonian is a
Cantor set [49,50]. In this section, we will describe how our
method can be applied to systems in one dimension using
the explicit example of the Fibonacci quasicrystal, which has
the advantage that many of the constructions are easier to
visualize in such case. In particular, we compute upper and
lower bound for the distance to the spectrum for the Fibonacci
Hamiltonian, which clearly show the fractal structure of its
spectrum, see Fig. 5.

1. Cut-and-project construction of the Fibonacci quasicrystal

As in the Ammann-Beenker case, we will define two pro-
jections, in this case from R2 to R, corresponding respectively
to the real space and to the additional dimension,

p = (1 ϕ) κ = (−ϕ 1), (C1)

where ϕ := 1+
√

5
2 is the golden ration. Clearly the kernels of

p and κ are again orthogonal.
The acceptance region in the case of the Fibonacci qua-

sicrystal consists simply of the interval

R = [0, 1). (C2)

This is the projection of the vertical interval {0} × [0, 1)
via κ .

We can then define the Fibonacci lattice as

$Fib =
{

p(z)
∣∣ z ∈ Z2, κ (z) ∈ R

}
.

The condition κ (z) ∈ R corresponds to the “cutting” step, the
expression p(z) is the “projection” step.

Figure 6 contains a pictorial representation of this cut-and-
project construction. The yellow shaded area in Fig. 6 shows
points in R2 for which κ (z) ∈ R.

This definition of the Fibonacci quasicrystal is equivalent
to the more common one that uses the substitution rules

S → L L → LS.

FIG. 6. Cut-and-project construction of the Fibonacci quasicrystal.

155140-11
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Results for λ = 2 and L = 500. The blue strips show the minimal resp. maximal sizes of
the gaps compatible with our bounds.
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Figure 1. Exact computation of the ε-pseudospectrum of a non-Hermitian
Hamiltonian with a cut-and-project potential for ε = 0.5. The Hamiltonian is
defined by Hψ(n) = −ψ(n − 1) + V (n)ψ(n) − ψ(n + 1). The chosen potential
has the form V (n) = (1 + i)1(αn < 1/α), where we chose α = 1.66 (For

α = (1 +
√

5)/2, this construction gives the Fibonacci quasicrystal, but we
chose α = 1.66 because it creates a less uniform potential leading to a slower
convergence and thus a more pronounced effect of increasing L in the pictures.).
The left and right column show the same computation with L = 20 and L =
300, respectively. The uppermost row shows the lower, spectral gap bound on
ρH , while the row below shows the upper bound on ρH from [40]. If the lower
bound is positive, the associated point is known to be in the complement of
the pseudospectrum; if the upper bound is negative, the point is known to

be inside the pseudospectrum. This gives a decomposition of the plane into
three sets R, U, and S of points, where it is known that S ⊆ Specε(H), that
R ∩ Specε(H) = ∅, and no statement can be made about U . This is very
similar to the sets Sτ , Rτ and Uτ in Section 8, except that here we have fixed
L instead of τ and we do not vary the spacing of the grid on which ρ̃H (λ, τ)
is evaluated.

2.2. Examples. Infinite-volume operators which are discrete and of finite local
complexity, as described in Definitions 2.3, 2.4, and 2.7, occur frequently in physics.
For example, a so-called discrete Schrödinger operator on ω2(Zn) [69, 100, 77] is of

Approximations to the 0.5-pseudospectrum for λ = 1 + i.



Summary and conclusion
There is no algorithm that computes the spectrum of any general infinite-volume, discrete
one-body operator to a given precision – this is obvious.

For operators that exhibit hoppings decaying faster than r−(n+ε), quasi-modes can be
detected within bounded regions of controlled size.

As a consequence, for operators with finite local complexity – that is, if there is only a
finite number of inequivalent actions of the operator on each scale – the spectrum is
computable. More precisely, there is an algorithm that provides an approximation of the
spectrum with arbitrary precision and two-sided error control in Hausdorff distance.
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one-body operator to a given precision – this is obvious.

For operators that exhibit hoppings decaying faster than r−(n+ε), quasi-modes can be
detected within bounded regions of controlled size.

As a consequence, for operators with finite local complexity – that is, if there is only a
finite number of inequivalent actions of the operator on each scale – the spectrum is
computable. More precisely, there is an algorithm that provides an approximation of the
spectrum with arbitrary precision and two-sided error control in Hausdorff distance.
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