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Introduction

Q: How to find the spectrum of a tight-binding operator on a quasicrystaline lattice?
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Introduction

The following figures are from Terry Loring's paper

Bulk spectrum and K-theory for infinite-area topological quasicrystals, JMP 2019.



Introduction

The following figures are from Terry Loring's paper
Bulk spectrum and K-theory for infinite-area topological quasicrystals, JMP 2019.
He numerically computes eigenvalues and eigenfunctions of the p, + ip,-thight-binding
model on finite patches of the Ammann-Beenker tiling: For nearest neighbours the
hoppings are
Hy, = —tos — % cos(txy )o1 — % sin(axy )o2

and with on-site term

Hxx = —Ho3.
Here t, 1, A € R and a,, is the signed angle between the line xy and the horizontal axis.



Introduction

The following figures are from Terry Loring's paper
Bulk spectrum and K-theory for infinite-area topological quasicrystals, JMP 2019.

He numerically computes eigenvalues and eigenfunctions of the p, + ip,-thight-binding
model on finite patches of the Ammann-Beenker tiling: For nearest neighbours the
hoppings are
Hy, = —tos — % cos(txy )o1 — % sin(axy )o2
and with on-site term
Hyx = —HO3 .
Here t, 1, A € R and a,, is the signed angle between the line xy and the horizontal axis.

His goal is to understand the spectrum of the Hamiltonian on the infinite aperiodic
domain within a parameter range in which the model is expected to exhibit topological
non-triviality, where edge states lead to spectral pollution when the domain is restricted to
a finite size.



Introduction (figures from T. Loring)

Bulk eigenfunctions at radius 15 and radius 40.
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Edge eigenfunctions at radius 15 and radius 40.
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But also eigenfunctions that are neither clearly bulk nor clearly edge states appear at all
scales.
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Upper bound to the distance of the spectrum of the infinite volume operator obtained
from computing eigenvalues on a finite sample.
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L

Upper bound obtained from his new spectral localizer method.




Introduction

PHYSICAL REVIEW LETTERS 122, 250201 (2019)

How to Compute Spectra with Error Control

Matthew J. Colbrook, Bogdan Roman, and Anders C. Hansen
Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Wilberforce Road, Cambridge CB3 OWA, United Kingdom

® (Received 28 November 2018; published 28 June 2019)

Computing the spectra of operators is a fundamental problem in the sciences, with wide-ranging
applications in condensed-matter physics, quantum mechanics and chemistry, statistical mechanics, etc.
While there are algorithms that in certain cases converge to the spectrum, no general procedure is known
that (a) always converges, (b) provides bounds on the errors of approximation, and (c) provides
approximate eigenvectors. This may lead to incorrect simulations. It has been an open problem since
the 1950s to decide whether such reliable methods exist at all. We affirmatively resolve this question, and
the algorithms provided are optimal, realizing the boundary of what digital computers can achieve.
Moreover, they are easy to implement and parallelize, offer fundamental speed-ups, and allow problems
that before, regardless of computing power, were out of reach. Results are demonstrated on difficult
problems such as the spectra of quasicrystals and non-Hermitian phase transitions in optics.

DOI: 10.1103/PhysRevLett.122.250201



Introduction.—It is hard to overestimate the importance
of computing the spectra of operators in mathemati-
cal physics, quantum chemistry, condensed-matter physics,
statistical mechanics, Hermitian, as well as non-Hermitian,
quantum mechanics, quasicrystals, optics, and many other
fields. Motivated by the many applications, the topic has
been intensely investigated, by both physicists [1-9] and
mathematicians [10-17], since the 1950s. A reliable algo-
rithm should converge and guarantee that any point of the
output is close to the spectrum, up to a chosen arbitrary small
error tolerance. A key question is whether such algorithms
exist. Despite more than 90 years of quantum theory,
the answer to this question has been unknown, even for
Schrodinger operators.

The importance of this question is highlighted by the
current interest in the spectral properties of systems with
complicated spectra. The study of aperiodic systems, such
as quasicrystals [18,19], often leads to complicated, even
fractal-like spectra [20-24], which can make current

Introduction (Colbrook et al. continued)

a computer can achieve regarding limits of finite-dimen-
sional systems.

In this Letter, we establish the boundaries for spectral
problems in infinite dimensions. We show that it is
impossible to design an algorithm for computing the
spectra of Schrodinger operators which, given € > 0, halts
and produces an output that is ¢ away from the true
spectrum as measured in the Hausdorff metric. In other
words, using information from a finite patch (truncation) of
an operator A, it is impossible to produce an approximation
T'(A) to the spectrum Sp(A), which satisfies the two
inequalities (I) dist(z, Sp(4)) <e, for all z € I'(4), and
also (I dist(w,T'(A)) <'e, for all w € Sp(A), simultane-
ously. However, we show that it is possible to create
approximations, converging to the spectrum, that satisfy
inequality (I). Indeed, we know the approximation is sound
or reliable, but we do not know if we have got every-
thing yet.

Namely, we provide an algorithm I',(-), which both



Introduction (Colbrook et al. continued)
Finite Section (Open B.C.s)
A | )

Energy (Spectrum)
Algorithm

Energy (Spectrum)

One application in their paper is the Hofstadter Hamiltonian on the hexagonal lattice.



Teaser

In Hege, Moscolari, T., Math. of Comp.
2025 we show that the spectrum of
“short-range” thight-binding models is
computable with explicit error control under
the additional assumption of finite local
complexity (flc).
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In Hege, Moscolari, T., Math. of Comp.
2025 we show that the spectrum of
“short-range” thight-binding models is
computable with explicit error control under
the additional assumption of finite local
complexity (flc).

Applying this algorithm to the

px + ipy-model on the Ammann-Beenker
tiling allows us to prove, for example, that
the spectral gap at 0.804, which was
conjectured by Loring to be “a mirage”,
remains open in the infinite system.



Teaser

In Hege, Moscolari, T., Math. of Comp.
2025 we show that the spectrum of
“short-range” thight-binding models is
computable with explicit error control under
the additional assumption of finite local
complexity (flc).

Applying this algorithm to the

px + ipy-model on the Ammann-Beenker
tiling allows us to prove, for example, that
the spectral gap at 0.804, which was
conjectured by Loring to be “a mirage”,
remains open in the infinite system.

We also proved a number of gaps for the
Hofstadter model on the Ammann-Beenker
tiling.
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The setting: short-range discrete operators

Definition

A subset ' C R” is called uniformly discrete if there exists g > 0, the packing radius, such
that d(x,y) > g for all x,y € ' with x # y. Here and in the following d(-,-) denotes the
maximum distance and B, (x) the corresponding open “ball” of radius r > 0 around x € R”".



The setting: short-range discrete operators

Definition

A subset ' C R” is called uniformly discrete if there exists g > 0, the packing radius, such
that d(x,y) > g for all x,y € ' with x # y. Here and in the following d(-,-) denotes the
maximum distance and B, (x) the corresponding open “ball” of radius r > 0 around x € R”".

Definition
A discrete operator H in dimension n € N is a bounded operator on a seperable Hilbert
space H, together with an orthonormal basis (ey)xcr indexed by a uniformly discrete subset
[ C R”. Its matrix elements at points x,y € I are H,, := (e,, Hey).
We say that a discrete operator H in dimension n € N is short-range, if there exist C,e > 0
such that

|Hyy| < Cd(x,y)"(rte) forall x,y €T.

It has finite range m > 0 if
d(x,y)>m = H,, =0.



The setting: finite local complexity (flc)
Definition
For a discrete operator H two sets A, B C I are said to be equivalent w.r.t. the action of

H, if there is a t € R" such that B = A+ t and if there exists U : A — S  C such that
for all a1, a» € A it holds that

Hb1b2 = U(al)Ha182 U(a2)*’

where by = a; +t and by = a5 + t.



The setting: finite local complexity (flc)

Definition

For a discrete operator H two sets A, B C I are said to be equivalent w.r.t. the action of
H, if there is a t € R" such that B = A+ t and if there exists U : A — S  C such that
for all a1, a, € A it holds that

Hb1b2 = U(al)Ha1a2 U(a2)* )
where by = a; +t and by = a5 + t.
Definition

A discrete operator H is said to have finite local complexity (flc) if for any L > 0 the set

of subsets
{FNBi(x)| xeR"}

is contained in finitely many equivalence classes with respect to equivalent action.



The (flc) spectral problem is solvable with explicit error control
Definition
The flc spectral problem is the computational problem (Q, A, (M, di1), =), where
> Q is the set of normal discrete operators with (flc) and short-range;
> Ais a family of evaluation functions (f;);ez satisfying .. .;
> M is the set of all compact subsets of C and dy the Hausdorff distance;
> = is the map which assigns to every operator H its spectrum, =(H) = Spec(H).



The (flc) spectral problem is solvable with explicit error control
Definition
The flc spectral problem is the computational problem (Q, A, (M, di1), =), where
> Q is the set of normal discrete operators with (flc) and short-range;
> Ais a family of evaluation functions (f;);ez satisfying .. .;
> M is the set of all compact subsets of C and dy the Hausdorff distance;
> = is the map which assigns to every operator H its spectrum, =(H) = Spec(H).

Theorem (Hege, Moscolari, T., MOC 2025)

Let (Q,A, (M, dy),=) be the flc spectral problem. Then for every k € N there exists
a Blum-Shub-Smale (BSS) algorithm 'y : Q — M, using the family A of evaluation

functions, such that
di(Fe(H), Z(H)) < 27*

for all H € Q.



The lower norm function and quasi-modes

The key steps in the proof are upper and lower bounds on the lower norm function

I(H = Ao
- C 0, ) A A) = el
pr: C = [0,00) sonN) = Tl
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The lower norm function and quasi-modes

The key steps in the proof are upper and lower bounds on the lower norm function

I(H = Ao
- C 0, ) A A) = el
pr: C = [0,00) sonN) = Tl

It is also used to define the §-pseudospectrum of an operator H as
Specs(H) == {A € C|pu(A) < 3}

Any ¢» € H \ {0} that satisfies ||[(H — A\)v|| < d||¢|| is called an d-quasi-mode.
For normal operators H it holds that

pH(A) = d(A, Spec(H))
and for general operators one still has

pH(N) < (), Spec(H)).



Uneven sections and the upper bound
Following Colbrook et al. we use so called uneven local sections to avoid spectral pollution.
Definition
Let H be a discrete operator with finite range m, let x € R”, L > 0, and A € C. The
uneven section for these data is the rectangular matrix

Quax : He(x) = Hinx)s  Quax(®) :=1p,, ) (H = N)1g ¥,
where Hp, () := span{e, |y € Bi(x) NT}.



Uneven sections and the upper bound
Following Colbrook et al. we use so called uneven local sections to avoid spectral pollution.
Definition
Let H be a discrete operator with finite range m, let x € R”, L > 0, and A € C. The
uneven section for these data is the rectangular matrix

Quax He(x) = HBim)s  Quax(¥) :=1g,,, c0(H—=A)1g ¥,
where Hp, () := span{e, |y € Bi(x) NT}.

Theorem: The upper bound

Let H be a discrete operator with finite range m, and let A € C, L > 0, and x € R"” be
arbitrary. Let
erax = S1(QLrx)

be the smallest singular value of Q; ) «. Then

pH(A) < epax-



Proof of the upper bound

Theorem: The upper bound

Let H be a discrete operator with finite range m, and let A € C, L > 0, and x € R” be

arbitrary. Let
eLax = S1(QLxx)

be the smallest singular value of Q; x . Then
pH(A) <erax-

Proof: The singular value decomposition allows us to write
k
Quax = USV* = Z \ui)si(vil
i=1

« the columns of V, and

.....

where (uj)j=1,. k are the first k columns of U, (v;)i=1
(5i)i=1,... k the diagonal elements of S.
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Proof of the upper bound

Theorem: The upper bound

Let H be a discrete operator with finite range m, and let A € C, L > 0, and x € R” be

arbitrary. Let
eLax = S1(QLxx)

be the smallest singular value of Q; x . Then
pH(A) <erax-

Proof: The singular value decomposition allows us to write
k
Quax = USV* = Z \ui)si(vil
i=1

« the columns of V, and

.....

where (uj)j=1,. k are the first k columns of U, (v;)i=1
(5i)i=1,... k the diagonal elements of S.Then

(H—)\)Vl = (H_/\)lBL(x)Vl = 1BL+m(X)(H_)‘)1BL(X)V1 = QL,)\,xvl = S1Uu7 .
Hence, ||(H — Mwvi|| = si||ua|| = s1. O

77777



The lower bound

Theorem: The lower bound
Let H be a discrete operator with finite range m, L > m, and A € C. Set

ey = inf g1«
2 XeRn 2y

and M := supx,yEF |ny|- Then

n/2
pH(A) > e\ — % with C :=mM (36m) .



The lower bound

Theorem: The lower bound
Let H be a discrete operator with finite range m, L > m, and A € C. Set

ELN = inf EL X
k) XERH 2y

and M :=sup, ,cr [Hxy|. Then

n/2
pH(A) > e\ — % with C :=mM (36m) .

Strategy of the proof: Show that if H has a d-quasi-mode 1) at some energy A, then it
must be detectable on sufficiently large scales L > m, i.e. that a suitable restriction of 1)
to a suitable box By (x) isa d + %—quasi—mode.



Proof of the lower bound

For x € R" and L > 0 define the tent function V; , : R” — R with Lipschitz const. % by

Vi x(y) := max (0’ 1— HXZ”) .



Proof of the lower bound

For x € R and L > 0 define the tent function V , : R” — R with Lipschitz const. by
Vi x(y) := max <07 1— HXZ”) .

Lemma 1
For all @) € H we have

212 n
m-M< [ 36m
[ Vi M1 00" < 3 () IVeo
xERn q

2101



Proof of the lower bound

For x € R and L > 0 define the tent function V , : R” — R with Lipschitz const. by
Vi x(y) := max <0, 1— HXZ”) .

Lemma 1
For all @) € H we have

m>M? (36m\"
[ Ve H01Bax” < T2 (357 ol

Lemma 2
Assume that ¢ € H is a d-quasi-mode of H at A\ € C. Then there exists x € R" such that

I(H=X)V )l < 6+ £) IVl
and thus
ety <eax <6+ £,



Proof of Lemma 2
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Proof of Lemma 2

Proof of Lemma 2: We trivially have

Vx5 dx" = (|63 Vi oll 72z -
(R")

Using this and Minkowski's inequality in L?(R")
L= WVesblfpax = [ ViH = A0 = Ve Hlufdx”

2
< (\/fRnII Vix(H = N3, dxn + \/fRnH[VLm Hv|2, dxn)

=||[(H=X V n C
I(H=X) [l Violl 2(zm) STl Veoll 2wy

2
< (0452 IViolagn el




Proof of Lemma 2

Proof of Lemma 2: We trivially have
[ VL1 dx = 101l Veolgen.-
Using this and Minkowski's inequality in L?(R")
LI = OWVewlfeds® = [ IVea(H = Ay = Ve, B

2
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Proof of Lemma 2

Proof of Lemma 2: We trivially have
[ VL1 dx = 101l Veolgen.-
Using this and Minkowski's inequality in L?(R")
LI = OWVewlfeds® = [ IVea(H = Ay = Ve, B

2
< (\/fRnII Vix(H = N3, dxn + \/fRnH[VLm Hv|2, dxn)

== Veollizgar) <l Violzgen
2
(64 €)1 Veoll Tl 15
2
= [+ 6 Vil

Thus, there exists x € R" such that [|[(H — \) Vi || < (6 + ) [|Vix¥]).

IN



Proof of Lemma 2 continued

/ I(H = MWVl dx" = / Vi (H = Ao — [Vis, HI |2 dx”
Rn RN

(W Seall Ve (H = Nl 7+ o 1Ves Hlw B x )
=IH=2)¢lllVioll 2y < S el Viol 2 zny

< (04 6 I ViolZan 1013

_ /R (4 6)7 Vel dx”

Thus, there exists x € R" such that ||[(H — AV |ln < (6 + ) (| Vit
Since ¢ := Vi« is supported in B (x) we obtain
1QLasbllz = [(H =N lla < (64 ) 191,

and hence ) y < e <0+ % O

IN




Proof of the lower bound

Proof of the lower bound: Let A € C. For any 6 > py()\), by definition of the lower
norm function, there exists a d-quasi-mode ¢ € H, i.e.

I(H =Nl < dllvll-



Proof of the lower bound

Proof of the lower bound: Let A € C. For any 6 > py()\), by definition of the lower
norm function, there exists a d-quasi-mode ¢ € H, i.e.

I(H =Nl < dllvll-

By Lemma 2 we have
epy <0+ % .



Proof of the lower bound

Proof of the lower bound: Let A € C. For any 6 > py()\), by definition of the lower
norm function, there exists a d-quasi-mode ¢ € H, i.e.

I(H =Nl < dllvll-

By Lemma 2 we have
epy <0+ % .

As this holds for all § > py(\), we obtain

ety —$ < pu(N). O



Computability of the (pseudo-)spectrum for flc-operators

Assuming that for an flc-operator H one can find an algorithm that yields all finitely many
inequivalent realizations (QLJ\J);(:l of Q) x at a given spectral value A € C and scale L,
one can (numerically) compute

e = inf ¢ = min s1(Q ;).
LA= MM ELax =, min, 1(QLi)

I=1,...



Example: the 1d-Fibonacci crystal

Let [ = Z and

(HP)U) = = (—1) = (+1)+AV()v ()

be the discrete Laplacian with an
aperiodic potential, where V/(j) is
either 0 or 1 according to the jth
letter in the Fibonacci string.

22 1

20 A

18 A

16 A

14 A

12 A

...............

...............

................

...............




Example: the 1d-Fibonacci crystal

—— upper bound
lower bound
0.3

0.2

0.1

bound (different scale)

0.0

-1 0 1 2 3
energy

Results for A = 2 and L = 500. The blue strips show the minimal resp. maximal sizes of
the gaps compatible with our bounds.



Example: the 1d-Fibonacci crystal

Pw upper bound, L = 20 i upper bound, L = 300
) /W1 /_\/\"

14

Im(z)

0- 025

- L\_L—/“/

pw lower bound, L = 20
025 =0 V2 \\ ~100— ~1:05m

Im(z)

- w

o0 7 /—/ _—

Decomposition of €, L = 20

Im(z)

0 1 0 1
Re(z) Re(z)

Approximations to the 0.5-pseudospectrum for A = 1 + 1.
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Thanks for your attention!



