

Approach to equilibrium in translation-invariant quantum systems

Clément Tauber (CEREMADE, Université Paris Dauphine - PSL) joint work Vojkan Jaksic, Claude-Alain Pillet, and Anna Szczepanek

Quantissima sur Oise CY Advanced Studies 16th September 2025

Zeroth law of thermodynamics

"The zeroth law deals with the observed fact that a large system seems to normally have "states" described by a few macroscopic parameters like a temperature and density, and that any system not in one of these states, left alone, rapidly approaches one of these states. When Boltzmann and Gibbs tried to find a macroscopic basis for thermodynamics, they realized that the approach to equilibrium was the most puzzling and deepest problem in such a formalism."

from Simon, B.: The Statistical Mechanics of Lattice Gasses.

Heuristic motivation

- Consider an infinite quantum system on a d-dimensional lattice
- At t=0: consider a translation invariant state ho_0 . Ex: equilibrium state at inverse temperature eta
- Evolve it with a distinct dynamics for t > 0

$$\rho_0 = e^{-\beta H_1}$$

$$\tau_t = e^{itH_2} \cdot e^{-itH_2}$$

What happens to the state as $t \to \infty$?

- Equilibrium states for infinite systems are well known: KMS states
- ullet A lot is known when H_2 is a local perturbation: return to equilibrium, non-equilibrium steady states, entropy production...

What happens when the perturbation is infinite, but translation invariant?

Our program so far

- Formulate the problem
- Develop the structural theory, independent from specific models
- Previously: approach to equilibrium characterized by a strict increase of entropy

Jaksic, Pillet, T. '24

- Anna's talk: improvement of several conservation laws
- Today's talk: a new characterization of approach to equilibrium, related to constants of motion.
- One outcome: characterization of approach to equilibrium when the system has no constant of motion except the energy (non-integrable models)

Outline

Approach to Equilibrium

Main result

 $Structural\ theory$

Approach to Equilibrium

Spin algebra, states and entropy

- $\mathcal{F} = \{X \subset \mathbb{Z}^d, |X| < \infty\}, \ \mathcal{U}_X = \mathcal{B}(\mathcal{H}_X)$
- ullet $\mathcal{U} = igcup_{X \in \mathcal{F}} \mathcal{U}_X$ is the spin C^* -algebra over \mathbb{Z}^d
- $\tau_{\mathsf{x}}: \mathcal{U}_{\mathsf{X}} \to \mathcal{U}_{\mathsf{X}+\mathsf{x}}$ for each $\mathsf{x} \in \mathbb{Z}^d$
- ullet \mathcal{S}_{I} is the set of translation invariant states on \mathcal{U}
- ullet Mean specific entropy of $u\in\mathcal{S}_{\mathrm{I}}$

$$s(
u) = -\lim_{\Lambda o \mathbb{Z}^d} rac{1}{|\Lambda|} \mathrm{tr}(
u_\Lambda \log(
u_\Lambda))$$

with $\nu(A) = \operatorname{tr}(\nu_{\Lambda}A)$ for all $A \in \mathcal{U}_{\Lambda}$. Always exists, is affine and upper semi-continuous.

• Mean relative entropy of $u,\omega\in\mathcal{S}_{\mathrm{I}}$

$$s(
u|\omega) = -\lim_{\Lambda o \mathbb{Z}^d} rac{1}{|\Lambda|} \mathrm{tr}ig(
u_\Lambda(\log(\omega_\Lambda) - \log(
u_\Lambda))ig)$$

If such a limit exists, then $s(\nu|\omega) \geq 0$.

Interactions, Hamiltonians and Pressure

An interaction is Φ a family $\{\Phi(X)\}_{X\in\mathcal{F}}$ such that $\Phi(X)\in\mathcal{U}_X$ is a self-adjoint. Moreover we assume translation invariance: $\tau_X(\Phi(X))=\Phi(X+X)$.

Big (Banach) space of interactions

$$\mathcal{B}_{\rm b} = \{\Phi, \ \|\Phi\|_{\rm b} < \infty\}, \qquad \|\Phi\|_{\rm b} := \sum_{X \ni 0} \frac{\|\Phi(X)\|}{|X|}.$$

Let $\Phi \in \mathcal{B}_{\mathrm{b}}$

- Local Hamiltonian: $H_{\Phi}(\Lambda) = \sum_{X \subset \Lambda} \Phi(X)$ (with $\Lambda \in \mathcal{F}$)
- Pressure (Helmholtz free energy) at $\beta > 0$:

$$p_{eta}(\Phi) = \lim_{\Lambda o \mathbb{Z}^d} rac{1}{|\Lambda|} \log(\mathrm{tr}(\mathrm{e}^{-eta H_{\Phi}(\Lambda)})) < \infty$$

6

Equilibrium states

For $\nu \in \mathcal{S}_{\mathrm{I}}$ and $\Phi \in \mathcal{B}_{\mathrm{b}}$, the mean energy reads

$$\lim_{\Lambda \to \mathbb{Z}^d} \frac{1}{|\Lambda|} \nu(H_{\Phi}(\Lambda)) = \nu(E_{\Phi}), \qquad E_{\Phi} = \sum_{X \ni 0} \frac{\Phi(X)}{|X|}$$

Gibbs variational principle

For any $\Phi \in \mathcal{B}_{\mathrm{b}}$ one has

$$p_{eta}(\Phi) = \sup_{
u \in \mathcal{S}_{\mathrm{I}}} \left(s(
u) - eta
u(E_{\Phi}) \right)$$

Equilibrium states are

$$\mathcal{S}_{\mathrm{eq}}(eta, \Phi) = \{
u \in \mathcal{S}_{\mathrm{I}} \, | \, p_{\beta}(\Phi) = s(
u) - \beta
u(E_{\Phi}) \}$$

Rk (Dual variational principle): for any $\nu \in \mathcal{S}_{\mathrm{I}}$ one has $s(\nu) = \inf_{\Phi \in \mathcal{B}_{\mathrm{b}}} \left(p_{\beta}(\Phi) + \beta \nu(E_{\Phi}) \right)$

Surface energies

Small space of interactions $\mathcal{B}_{\mathrm{s}} \subset \mathcal{B}_{\mathrm{b}}$

$$\mathcal{B}_{\mathrm{s}} = \{\Phi, \ \|\Phi\|_{\mathrm{s}} < \infty\}, \qquad \|\Phi\|_{\mathrm{s}} := \sum_{X \ni 0} \|\Phi(X)\| \,.$$

Proposition

For $\Phi \in \mathcal{B}_{\mathrm{s}}$ and $\Lambda \in \mathcal{F}$ the surface energies

$$W_{\Phi}(\Lambda) = \lim_{\Lambda' \to \mathbb{Z}^d} (H_{\Phi}(\Lambda') - H_{\Phi}(\Lambda) - H_{\Phi}(\Lambda' \setminus \Lambda)) = \sum_{\substack{X \cap \Lambda \neq \emptyset \\ X \cap \Lambda^c \neq \emptyset}} \Phi(X)$$

exist and satisfy
$$\lim_{\Lambda \to \mathbb{Z}^d} \frac{\mathcal{W}_{\Phi}(\Lambda)}{|\Lambda|} = 0.$$

8

Dynamics

Recall $\mathcal{U}_{\mathrm{loc}} = \underset{X \in \mathcal{F}}{\cup} \mathcal{U}_{X}$. For $\Phi \in \mathcal{B}_{\mathrm{s}}$, consider the *-derivation $\delta_{\Phi} : \mathcal{U}_{\mathrm{loc}} \to \mathcal{U}$ defined by

$$\delta_{\Phi}(A) = \sum_{X \in \mathcal{F}} [\Phi(X), A], \qquad (A \in \mathcal{U}_{loc}),$$

and denote its closure by $\overline{\delta_{\Phi}}$.

Theorem

 $\overline{\delta_{\Phi}}$ generates a C^* -dynamics α_{Φ}^t on $\mathcal U$ if and only if $(i\pm\delta_{\Phi})\mathcal U_{\mathrm{loc}}$ is dense in $\mathcal U$. In that case

$$\alpha_{\Phi}^{t}(A) = \lim_{\Lambda \to \mathbb{Z}^{d}} e^{itH_{\Phi}(\Lambda)} A e^{-itH_{\Phi}(\Lambda)}, \qquad A \in \mathcal{U},$$

where the limit is uniform for t compacts.

9

Surface energies and Dynamics

Definition

$$\mathcal{B}_{\mathrm{sd}} = \{ \Phi \in \mathcal{B}_{\mathrm{s}}, \quad \overline{\delta_{\Phi}} \text{ generates a } \textit{C^*-dynamics α_{Φ}^t on \mathcal{U}} \}$$

 $\Phi \in \mathcal{B}_{\mathrm{sd}}$ guarantees the existence of surface energies $W_{\Phi}(\Lambda)$ and C^* -dynamics α_{Φ}^t . It contains the usual spaces: $\mathcal{B}_{\mathrm{f}} \subset \mathcal{B}_{\mathrm{r}} \subset \mathcal{B}_{\mathrm{sd}}$ with

$$\mathcal{B}_{\mathrm{f}} = \{\Phi \in \mathcal{B}, \exists r > 0, |X| > r \Rightarrow \Phi(X) = 0\} \qquad \text{(finite range)}$$

and

$$\mathcal{B}_r = \{\Phi \in \mathcal{B}, \left\|\Phi\right\|_r < \infty\}, \qquad \left\|\Phi\right\|_r = \sum_{X \ni 0} \mathrm{e}^{r(|X|-1)} \left\|\Phi(X)\right\| \qquad \text{(short range)}.$$

Prop: For $\Phi \in \mathcal{B}_{sd}$, $\omega \in \mathcal{S}_{eq}(\beta, \Phi)$ iff ω is a (β, α_{ϕ}) -KMS state.

Equilibrium Steady States (ESS)

Let $\omega \in \mathcal{S}_{\mathrm{I}}$ and $\Phi \in \mathcal{B}_{\mathrm{sd}}$. For T > 0 define

$$\overline{\omega}_{\mathcal{T}} = \frac{1}{\mathcal{T}} \int_{0}^{\mathcal{T}} \omega \circ \alpha_{t}^{\Phi} \mathrm{d}t$$

and consider the set of Equilibrium Steady States (ESS) (in contrast to NESS):

$$\mathcal{S}_+(\omega,\Phi) = \{ \operatorname{weak} * - \operatorname{lim}(\overline{\omega}_{\mathcal{T}})_{\mathcal{T}>0}, \ \mathcal{T} \to \infty \}.$$

For $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$ one has $\omega_+ \in \mathcal{S}_I$ and $\omega_+ \circ \alpha_t^{\Phi} = \omega_+$.

Conservation laws

Proposition

For $\Phi \in \mathcal{B}_r$ with r>0 (Jaksic, Pillet, Tauber '24) or $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma>2d$ (Anna's talk) one has

$$s(\omega \circ \alpha_{\Phi}^t) = s(\omega), \qquad \omega \circ \alpha_{\Phi}^t(E_{\Phi}) = \omega(E_{\phi})$$

for all $t \in \mathbb{R}$ and all $\omega \in \mathcal{S}_{\mathrm{I}}$.

Consequently for $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$, $s(\omega) \leq s(\omega_+)$ and $\omega_+(E_{\Phi}) = \omega(E_{\Phi})$.

 \textit{E}_{Φ} is a constant of motion of the dynamics.

Approach to Thermal Equilibrium

Let $\omega \in \mathcal{S}_{\mathrm{I}}$ and $\Phi \in \mathcal{B}_{\mathrm{sd}}$, with $e_0 = \omega(\mathcal{E}_{\Phi})$.

Set, if it exists, β_* such that for $\nu_{\rm eq} \in \mathcal{S}_{\rm eq}(\beta_*, \Phi)$ one has $\nu_{\rm eq}(E_\Phi) = e_0$.

Definition

The pair (ω, Φ) has the property of Approach to Thermal Equilibrium if

- $S_+(\omega, \Phi) = \{\omega_+\}$
- $\omega_+ \in \mathcal{S}_{eq}(\beta_*, \Phi)$

Main result

Admissible states

Consider $\mathcal{U}_{\mathrm{real}} \subset \mathcal{U}$ the real vector space of self-adjoint elements. $A \in \mathcal{U}_{\mathrm{real}}$ is a constant of motion for $\Phi \in \mathcal{B}_{\mathrm{sd}}$ if

$$u \circ \alpha_{\Phi}^{t}(A) = \nu(A), \quad \forall \nu \in \mathcal{S}_{\mathrm{I}}$$

We denote by $C(\alpha_{\Phi})$ the set of constants of motion (more structure later).

We say that ω is admissible for $\nu_{\mathrm{eq}} \in \mathcal{S}_{\mathrm{eq}}(\beta_*, \Phi)$ if

$$\omega(A) = \nu_{eq}(A), \quad \forall A \in C(\alpha_{\Phi}).$$

Notice that for E_{Φ} we always have $\omega(E_{\Phi}) = \nu_{eq}(E_{\Phi})$ by the choice of β_* .

Regularity

Definition

A pair $(\omega, \Phi) \in \mathcal{S}_I \times \mathcal{B}_{\mathrm{sd}}$ is called regular if the relative entropy $s(\nu|\omega)$ exists for all $\nu \in \mathcal{S}_I$ and satisfies the entropy balance equation:

$$s(\nu|\omega) = -s(\nu) + \nu(E_{\Phi}) + p(\Phi).$$

- The regular property holds when $\omega \in \mathcal{S}_{eq}(\Phi)$ with ω weak-Gibbs.
- For $\Phi \in \mathcal{B}_r$ with $\|\Phi\|_r < r$ (or $\Phi \in \mathcal{B}_{\mathrm{f}}$ and d=1) any $\omega \in \mathcal{S}_{\mathrm{eq}}(\Phi)$ is weak-Gibbs, hence regular.

Jaksic, Pillet, T. '24

- Anna's talk: weak-Gibbs property is preserved along the trajectories
- Entropy balance equation appears everywhere in our proofs.

Theorem

Jaksic, Pillet, Szczepanek, T. '25

Let $\omega \in \mathcal{S}_{\mathrm{I}}$ and $\Phi \in \mathcal{B}_{\mathrm{sd}}$. Suppose that $\mathcal{S}_{\mathrm{eq}}(\beta_*, \Phi) = \{\nu_{\mathrm{eq}}\}$ with $(\nu_{\mathrm{eq}}, \Phi)$ regular, $E_{\phi} \in \mathcal{C}(\alpha_{\phi})$, and moreover that ω is admissible for ν_{eq} . For $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$, the following statements are equivalent:

- 1. $\omega_+ = \nu_{\rm eq}$
- 2. $\omega_+ \in \mathcal{S}_{\mathrm{eq}}(1,\Psi_+)$ with $\Psi_+ \in \mathcal{B}_{\mathrm{sd}}$ such that (ω_+,Ψ_+) is regular, and $\mathcal{E}_{\Psi_+} \in \mathcal{C}(\alpha_\Phi)$.

Approach to thermal equilibrium is characterized by the existence of some abstract Ψ_+ and its decay properties.

(2) \Rightarrow (1) Since (ω_+, Ψ_+) is regular one has

$$\begin{split} s(\nu_{\rm eq}|\omega_{+}) &= -s(\nu_{\rm eq}) + \nu_{\rm eq}(E_{\Psi_{+}}) + P(\Psi_{+}) & \text{(regularity)} \\ &= -s(\nu_{\rm eq}) + \omega(E_{\Psi_{+}}) + P(\Psi_{+}) & \text{(admissible states)} \\ &= -s(\nu_{\rm eq}) + \omega_{+}(E_{\Psi_{+}}) + P(\Psi_{+}) & (E_{\Psi_{+}} \in C(\alpha_{\Phi})) \\ &= s(\omega_{+}) - s(\nu_{\rm eq}) & (\omega_{+} \in \mathcal{S}_{\rm eq}(\Psi_{+})) \end{split}$$

from which we infer $s(\omega_+) \geq s(\nu_{\rm eq})$.

A similar argument shows the converse inequality using the regularity of $(\nu_{\rm eq},\Phi)$ and conservation of E_{Φ} .

From the equalities $s(\omega_+) = s(\nu_{eq})$ and $\omega_+(E_{\Phi}) = \nu_{eq}(E_{\phi})$ we infer $\omega_+ \in \mathcal{S}_{eq}(\beta_*, \Phi)$ from Gibbs variational principle.

Dynamical vs structural assumptions

- $S_{eq}(\beta_*, \Phi) = \{\nu_{eq}\}$ with (ν_{eq}, Φ) regular, and $E_{\Phi} \in C(\alpha_{\Phi})$ are easy to satisfy by taking Φ nice and small.
- The admissibility of ω with respect to $\nu_{\rm eq}$ is a physical constraint.
- $\omega_+ \in \mathcal{S}_{\mathrm{eq}}(1, \Psi_+)$ with $\Psi_+ \in \mathcal{B}_{\mathrm{sd}}$ has to be established for specific models (dynamical problem). If Ψ_+ does not exist, approach to thermal equilibrium is not possible
- (ω_+, Ψ_+) regular relies either on a specific model (dynamical) or on general properties of quantum spin on a lattice (structural)

 Can be dropped if the system has only one constant of motion (see below)
- $E_{\Psi_+} \in C(\alpha_{\Phi})$ can be formulated based on some structural results (see below)

Structural theory

Commuting dynamics

$$\omega_+ \in \mathcal{S}_+(\omega,\Phi) \cap \mathcal{S}_{\mathrm{eq}}(1,\Psi_+)$$

 $\omega_+ \in \mathcal{S}_{\mathrm{eq}}(1,\Psi_+)$ with $\Psi_+ \in \mathcal{B}_{\mathrm{sd}}$ implies that ω_+ is a KMS state for dynamics $t \mapsto \alpha_{\Psi_+}^t$

Moreover $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$ is stationary with respect to α_{Φ} , so it is also a KMS state for the dynamics $t \mapsto \alpha_{\Phi}^s \circ \alpha_{\Psi_+}^t \circ \alpha_{\Phi}^{-s}$ for each fixed $s \in \mathbb{R}$. Consequently

$$\forall t, s \in \mathbb{R}, \qquad \alpha_{\Phi}^{s} \circ \alpha_{\Psi_{+}}^{t} \circ \alpha_{\Phi}^{-s} = \alpha_{\Psi_{+}}^{t}$$

The dynamics α_{Ψ_+} is preserved by α_{Φ} . Does this imply that $E_{\Psi_+} \in C(\alpha_{\Phi})$?

Surface energies of dressed Hamiltonian

Fix $s\in\mathbb{R}$ and consider for each $\Lambda\in\mathcal{F}$ (also appeared in Anna's talk with Ψ_0 instead of Ψ_+)

$$H_s(\Lambda) := e^{\mathrm{i} s H_{\Phi}(\Lambda)} H_{\Psi_+}(\Lambda) e^{-\mathrm{i} s H_{\Phi}(\Lambda)}.$$

- Well-defined pressure $p_s = p(\Psi_+)$
- Mean energy $\lim_{\Lambda \to \mathbb{Z}^d} |\Lambda|^{-1} \nu(H_s(\Lambda)) = \nu(\alpha_{\Phi}^s(E_{\Psi_+}))$ for any $\nu \in \mathcal{S}_{\mathrm{I}}$
- Generates dynamics $t\mapsto \alpha_{\Phi}^s\circ\alpha_{\Psi_+}^t\circ\alpha_{\Phi}^{-s}=\alpha_{\Psi_+}^t$
- Surface energies? $W_s(\Lambda) := \lim_{\Lambda' \to \mathbb{Z}^d} (H_s(\Lambda') H_s(\Lambda) H_s(\Lambda' \setminus \Lambda))$

Theorem

Jaksic, Pillet, Szczepanek, T. '25

For $\Phi, \Psi_+ \in \mathcal{B}_{\mathrm{sd}}$, assume that it exists $\epsilon > 0$ such that $W_s(\Lambda)$ exists for all $|s| < \epsilon$ and $\Lambda \in \mathcal{F}$ and satisfy $\lim_{\Lambda \to \mathbb{Z}^d} \frac{W_s(\Lambda)}{|\Lambda|} = 0$. Then $E_{\Psi_+} \in C(\alpha_{\Phi})$.

Prop: Surface energy assumption holds for $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}(\gamma > 2d)$ and $\Psi_+ \in \mathcal{B}_{\gamma}^{\mathrm{diam}}(\gamma > d)$ (Anna's talk)

Conservation of relative entropy

Proposition

For $\Phi, \Psi_+ \in \mathcal{B}_{\mathrm{sd}}$, assume that $s(\nu \circ \alpha_{\Phi}^t) = s(\nu)$ for all $\nu \in \mathcal{S}_{\mathrm{I}}$ and (ω_+, Ψ_+) regular. Then the following statements are equivalent

- 1. $s(\nu \circ \alpha_{\Phi}^t | \omega_+) = s(\nu | \omega_+)$ for all $t \in \mathbb{R}$ and $\nu \in \mathcal{S}_I$
- 2. $E_{\Psi_+} \in C(\alpha_{\Phi})$

Prop: Conservation of relative entropy holds for $\Phi \in \mathcal{B}_f$ and $\Psi_+ \in \mathcal{B}_{3r}$ with $\|\Psi_+\|_r < r$ (or $\Psi_+ \in \mathcal{B}_f$ if d=1) (Anna's talk)

Back to constants of motion

Let $\Phi \in \mathcal{B}_{\mathrm{sd}}$ and let $A \in C(\alpha_{\Phi})$. Consider

$$\mathrm{const} = \{c\mathbb{1} | c \in \mathbb{R}\}, \qquad \mathcal{I} = \overline{\mathrm{span}_{\mathbb{R}}\{B - \tau^{\mathsf{x}}(B) | B \in \mathcal{U}_{\mathrm{real}}, \mathsf{x} \in \mathbb{Z}^d\}}.$$

 $B \in \mathcal{I}$ iff $\nu(B) = 0$ for all $\nu \in \mathcal{S}_{\mathrm{I}}$. Consequently, for $A \in \mathcal{C}(\alpha_{\Phi})$ and $B \in \mathcal{I}$ one has

$$\nu \circ \alpha_{\Phi}^{t}(\lambda A + B + c\mathbb{1}) = \nu(\lambda A + B + c\mathbb{1})$$

Definition

The set of distinct constants of motion is $C(\alpha_{\Phi})$

$$\mathcal{C}(\alpha_{\Phi}) = \{[A], A \in \mathcal{C}(\alpha_{\Phi})\} \subset \mathcal{U}_{\text{real}}/(\mathcal{I} + \text{const})$$

Non-integrable systems

Theorem

Jaksic, Pillet, Szczepanek, T. '25

Let $\omega \in \mathcal{S}_I$ and $\Phi \in \mathcal{B}_{\mathrm{sd}}$. Suppose that $\mathcal{S}_{\mathrm{eq}}(\beta_*, \Phi) = \{\nu_{\mathrm{eq}}\}$ with $(\nu_{\mathrm{eq}}, \Phi)$ regular, and moreover that ω is admissible for ν_{eq} . Let $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$ and assume $\omega_+ \in \mathcal{S}_{\mathrm{eq}}(1, \Psi_+)$ with $\Psi_+ \in \mathcal{B}_{\mathrm{sd}}$. Moreover assume that

$$\mathcal{C}(\alpha_{\Phi}) = \{\lambda[E_{\Phi}], \lambda \in \mathbb{R}\}\$$

Then $E_{\Psi_+} \in C(\alpha_{\Phi})$ implies $\omega_+ = \nu_{\text{eq}}$.

The regularity of (ω_+, Ψ_+) is not necessary in that case. The proof relies on the concept of physical equivalence from Ruelle.

Recent results on proving the non-integrability (= no other constant of motion) of a large class of 1D-models, also extended to higher D.

Shirashi '19, Yamaguchi, Chiba, Shiraishi '24, Shirashi, Tasaki '25,...

Conclusion

Theorem

Jaksic, Pillet, Szczepanek, T. '25

Let $\omega \in \mathcal{S}_I$ and $\Phi \in \mathcal{B}_{\mathrm{sd}}$. Suppose that $\mathcal{S}_{\mathrm{eq}}(\beta_*, \Phi) = \{\nu_{\mathrm{eq}}\}$ with $(\nu_{\mathrm{eq}}, \Phi)$ regular, and moreover that ω is admissible for ν_{eq} . For $\omega_+ \in \mathcal{S}_+(\omega, \Phi)$, the following statements are equivalent:

- 1. $\omega_+ = \nu_{\rm eq}$
- 2. $\omega_+ \in \mathcal{S}_{\mathrm{eq}}(1, \Psi_+)$ with $\Psi_+ \in \mathcal{B}_{\mathrm{sd}}$ such that (ω_+, Ψ_+) is regular, and $E_{\Psi_+} \in \mathcal{C}(\alpha_{\Phi})$.
- ullet Approach to Thermal Equilibrium (ATE) requires the existence of Ψ_+ such that $\omega_+ \in \mathcal{S}_{\mathrm{eq}}(1,\Psi_+)$
- Its validity relies only on the properties of Ψ_+ . Proving ATE it is a trade-off between:
 - Establishing decay properties of Ψ_+ in specific models. (Ex: ATE holds if d=1 and $\Psi_+ \in \mathcal{B}_{\rm f}$)
 - Establishing structural results for quantum spin systems. (Ex: Show that all pairs (ω_+, Ψ_+) are regular for $\Psi_+ \in \mathcal{B}_{\mathrm{sd}}$)
- Conservation laws and constants of motion play a central role
- ullet ATE also holds for non-integrable models with a single constant of motion, provided that $E_{\Psi_+} \in \mathcal{C}(\alpha_\phi)$.

Perspectives

The problem of approach to equilibrium opens many directions for our program:

- Approach to (constrained) equilibrium in presence of several constants of motion
- General study of constant of motion
- ATE in explicit models

Thank you for your attention!

- Jaksic, V., Pillet, C. A., & Tauber, C. (2024). Approach to equilibrium in translation-invariant quantum systems: some structural results.
 Annales Henri Poincaré (Vol. 25, No. 1, pp. 715-749)
- Jaksic, V., Pillet, C. A., & Tauber, C. (2024). A note on adiabatic time evolution and quasi-static processes in translation-invariant quantum systems. Annales Henri Poincaré (Vol. 25, No. 1, pp. 751-771).
- Jaksic, V., Pillet, C. A., Szczepanek, A. & Tauber, C. Tauber: Dynamical Conservation Laws in Quantum Spin Systems, in preparation
- Jaksic, V., Pillet, C. A., Szczepanek, A. & Tauber, C. Approach to equilibrium in translation-invariant quantum systems: Some structural results II, in preparation