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Zeroth law of thermodynamics

“The zeroth law deals with the observed fact that a large system seems to normally have "states"
described by a few macroscopic parameters like a temperature and density, and that any system not
in one of these states, left alone, rapidly approaches one of these states. When Boltzmann and Gibbs
tried to find a macroscopic basis for thermodynamics, they realized that the approach to equilibrium
was the most puzzling and deepest problem in such a formalism.”

from Simon, B.: The Statistical Mechanics of Lattice Gasses.

1



Heuristic motivation

• Consider an infinite quantum system on a d-dimensional lattice

• At t = 0: consider a translation invariant state ρ0.
Ex: equilibrium state at inverse temperature β “ρ0 = e−βH1 ”

• Evolve it with a distinct dynamics for t > 0 “τt = eitH2 · e−itH2 ”

What happens to the state as t →∞ ?

• Equilibrium states for infinite systems are well known: KMS states

• A lot is known when H2 is a local perturbation: return to equilibrium, non-equilibrium steady states,
entropy production...

What happens when the perturbation is infinite, but translation invariant ?
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Our program so far

• Formulate the problem

• Develop the structural theory, independent from specific models

• Previously: approach to equilibrium characterized by a strict increase of entropy
Jaksic, Pillet, T. ’24

• Anna’s talk: improvement of several conservation laws

• Today’s talk: a new characterization of approach to equilibrium, related to constants of motion.

• One outcome: characterization of approach to equilibrium when the system has no constant of motion
except the energy (non-integrable models)

3



Outline

Approach to Equilibrium

Main result

Structural theory
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Approach to Equilibrium



Spin algebra, states and entropy

• F = {X ⊂ Zd , |X | <∞}, UX = B(HX )

• U =
⋃
X∈F

UX is the spin C∗-algebra over Zd

• τx : UX → UX+x for each x ∈ Zd

• SI is the set of translation invariant states on U

• Mean specific entropy of ν ∈ SI

s(ν) = − lim
Λ→Zd

1
|Λ| tr(νΛ log(νΛ))

with ν(A) = tr(νΛA) for all A ∈ UΛ. Always exists, is affine and upper semi-continuous.

• Mean relative entropy of ν, ω ∈ SI

s(ν|ω) = − lim
Λ→Zd

1
|Λ| tr

(
νΛ(log(ωΛ)− log(νΛ))

)
If such a limit exists, then s(ν|ω) ≥ 0.
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Interactions, Hamiltonians and Pressure

An interaction is Φ a family {Φ(X )}X∈F such that Φ(X ) ∈ UX is a self-adjoint. Moreover we assume
translation invariance: τx(Φ(X )) = Φ(X + x).

Big (Banach) space of interactions

Bb = {Φ, ‖Φ‖b <∞}, ‖Φ‖b :=
∑
X30

‖Φ(X )‖
|X | .

Let Φ ∈ Bb

• Local Hamiltonian: HΦ(Λ) =
∑
X⊂Λ

Φ(X ) (with Λ ∈ F)

• Pressure (Helmholtz free energy) at β > 0:

pβ(Φ) = lim
Λ→Zd

1
|Λ| log(tr(e−βHΦ(Λ))) <∞
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Equilibrium states

For ν ∈ SI and Φ ∈ Bb, the mean energy reads

lim
Λ→Zd

1
|Λ|ν(HΦ(Λ)) = ν(EΦ), EΦ =

∑
X30

Φ(X )

|X |

Gibbs variational principle
For any Φ ∈ Bb one has

pβ(Φ) = sup
ν∈SI

(
s(ν)− βν(EΦ)

)

Equilibrium states are
Seq(β,Φ) = {ν ∈ SI | pβ(Φ) = s(ν)− βν(EΦ)}

Rk (Dual variational principle): for any ν ∈ SI one has s(ν) = inf
Φ∈Bb

(pβ(Φ) + βν(EΦ))
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Surface energies

Small space of interactions Bs ⊂ Bb

Bs = {Φ, ‖Φ‖s <∞}, ‖Φ‖s :=
∑
X30

‖Φ(X )‖ .

Proposition
For Φ ∈ Bs and Λ ∈ F the surface energies

WΦ(Λ) = lim
Λ′→Zd

(HΦ(Λ′)− HΦ(Λ)− HΦ(Λ′ \ Λ)) =
∑

X∩Λ6=∅
X∩Λc 6=∅

Φ(X )

exist and satisfy lim
Λ→Zd

WΦ(Λ)

|Λ| = 0.
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Dynamics

Recall Uloc = ∪
X∈F
UX . For Φ ∈ Bs, consider the ∗-derivation δΦ : Uloc → U defined by

δΦ(A) =
∑
X∈F

[Φ(X ),A], (A ∈ Uloc),

and denote its closure by δΦ.

Theorem

δΦ generates a C∗-dynamics αt
Φ on U if and only if (i± δΦ)Uloc is dense in U . In that case

αt
Φ(A) = lim

Λ→Zd
eitHΦ(Λ)Ae−itHΦ(Λ), A ∈ U ,

where the limit is uniform for t compacts.
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Surface energies and Dynamics

Definition

Bsd = {Φ ∈ Bs, δΦ generates a C∗-dynamics αt
Φ on U}

Φ ∈ Bsd guarantees the existence of surface energies WΦ(Λ) and C∗-dynamics αt
Φ. It contains the usual

spaces: Bf ⊂ Br ⊂ Bsd with

Bf = {Φ ∈ B, ∃r > 0, |X | > r ⇒ Φ(X ) = 0} (finite range)

and
Br = {Φ ∈ B, ‖Φ‖r <∞}, ‖Φ‖r =

∑
X30

er(|X |−1) ‖Φ(X )‖ (short range).

Prop: For Φ ∈ Bsd, ω ∈ Seq(β,Φ) iff ω is a (β, αφ)-KMS state.
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Equilibrium Steady States (ESS)

Let ω ∈ SI and Φ ∈ Bsd. For T > 0 define

ωT =
1
T

∫ T

0
ω ◦ αΦ

t dt

and consider the set of Equilibrium Steady States (ESS) (in contrast to NESS):

S+(ω,Φ) = {weak ∗ − lim(ωT )T>0, T →∞}.

For ω+ ∈ S+(ω,Φ) one has ω+ ∈ SI and ω+ ◦ αΦ
t = ω+.
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Conservation laws

Proposition

For Φ ∈ Br with r > 0 (Jaksic, Pillet, Tauber ’24) or Φ ∈ Bdiam
γ with γ > 2d (Anna’s talk) one has

s(ω ◦ αt
Φ) = s(ω), ω ◦ αt

Φ(EΦ) = ω(Eφ)

for all t ∈ R and all ω ∈ SI.

Consequently for ω+ ∈ S+(ω,Φ), s(ω) ≤ s(ω+) and ω+(EΦ) = ω(EΦ).

EΦ is a constant of motion of the dynamics.
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Approach to Thermal Equilibrium

Let ω ∈ SI and Φ ∈ Bsd, with e0 = ω(EΦ).

Set, if it exists, β∗ such that for νeq ∈ Seq(β∗,Φ) one has νeq(EΦ) = e0.

Definition
The pair (ω,Φ) has the property of Approach to Thermal Equilibrium if

• S+(ω,Φ) = {ω+}

• ω+ ∈ Seq(β∗,Φ)

ω ωT ω+

?
= νeq
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Main result



Admissible states

Consider Ureal ⊂ U the real vector space of self-adjoint elements. A ∈ Ureal is a constant of motion for
Φ ∈ Bsd if

ν ◦ αt
Φ(A) = ν(A), ∀ν ∈ SI

We denote by C(αΦ) the set of constants of motion (more structure later).

We say that ω is admissible for νeq ∈ Seq(β∗,Φ) if

ω(A) = νeq(A), ∀A ∈ C(αΦ).

Notice that for EΦ we always have ω(EΦ) = νeq(EΦ) by the choice of β∗.

14



Regularity

Definition
A pair (ω,Φ) ∈ SI × Bsd is called regular if the relative entropy s(ν|ω) exists for all ν ∈ SI and satisfies the
entropy balance equation:

s(ν|ω) = −s(ν) + ν(EΦ) + p(Φ).

• The regular property holds when ω ∈ Seq(Φ) with ω weak-Gibbs.

• For Φ ∈ Br with ‖Φ‖r < r (or Φ ∈ Bf and d = 1) any ω ∈ Seq(Φ) is weak-Gibbs, hence regular.
Jaksic, Pillet, T. ’24

• Anna’s talk: weak-Gibbs property is preserved along the trajectories

• Entropy balance equation appears everywhere in our proofs.
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Main result

Theorem Jaksic, Pillet, Szczepanek, T. ’25
Let ω ∈ SI and Φ ∈ Bsd. Suppose that Seq(β∗,Φ) = {νeq} with (νeq,Φ) regular, Eφ ∈ C(αφ), and moreover
that ω is admissible for νeq. For ω+ ∈ S+(ω,Φ), the following statements are equivalent:

1. ω+ = νeq

2. ω+ ∈ Seq(1,Ψ+) with Ψ+ ∈ Bsd such that (ω+,Ψ+) is regular, and EΨ+ ∈ C(αΦ).

Approach to thermal equilibrium is characterized by the existence of some abstract Ψ+ and its decay
properties.
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Proof

(2)⇒ (1) Since (ω+,Ψ+) is regular one has

s(νeq|ω+) = −s(νeq) + νeq(EΨ+ ) + P(Ψ+) (regularity)

= −s(νeq) + ω(EΨ+ ) + P(Ψ+) (admissible states)

= −s(νeq) + ω+(EΨ+ ) + P(Ψ+) (EΨ+ ∈ C(αΦ))

= s(ω+)− s(νeq) (ω+ ∈ Seq(Ψ+))

from which we infer s(ω+) ≥ s(νeq).

A similar argument shows the converse inequality using the regularity of (νeq,Φ) and conservation of EΦ.

From the equalities s(ω+) = s(νeq) and ω+(EΦ) = νeq(Eφ) we infer ω+ ∈ Seq(β∗,Φ) from Gibbs variational
principle.
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Dynamical vs structural assumptions

• Seq(β∗,Φ) = {νeq} with (νeq,Φ) regular, and EΦ ∈ C(αΦ) are easy to satisfy by taking Φ nice and small.

• The admissibility of ω with respect to νeq is a physical constraint.

• ω+ ∈ Seq(1,Ψ+) with Ψ+ ∈ Bsd has to be established for specific models (dynamical problem).
If Ψ+ does not exist, approach to thermal equilibrium is not possible

• (ω+,Ψ+) regular relies either on a specific model (dynamical) or on general properties of quantum spin
on a lattice (structural)
Can be dropped if the system has only one constant of motion (see below)

• EΨ+ ∈ C(αΦ) can be formulated based on some structural results (see below)
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Structural theory



Commuting dynamics

ω+ ∈ S+(ω,Φ) ∩ Seq(1,Ψ+)

ω+ ∈ Seq(1,Ψ+) with Ψ+ ∈ Bsd implies that ω+ is a KMS state for dynamics t 7→ αt
Ψ+

Moreover ω+ ∈ S+(ω,Φ) is stationary with respect to αΦ, so it is also a KMS state for the dynamics
t 7→ αs

Φ ◦ αt
Ψ+
◦ α−s

Φ for each fixed s ∈ R. Consequently

∀t, s ∈ R, αs
Φ ◦ αt

Ψ+
◦ α−s

Φ = αt
Ψ+

The dynamics αΨ+ is preserved by αΦ. Does this imply that EΨ+ ∈ C(αΦ)?
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Surface energies of dressed Hamiltonian

Fix s ∈ R and consider for each Λ ∈ F (also appeared in Anna’s talk with Ψ0 instead of Ψ+)

Hs(Λ) := eisHΦ(Λ)HΨ+ (Λ)e−isHΦ(Λ).

• Well-defined pressure ps = p(Ψ+)

• Mean energy limΛ→Zd |Λ|−1ν(Hs(Λ)) = ν(αs
Φ(EΨ+ )) for any ν ∈ SI

• Generates dynamics t 7→ αs
Φ ◦ αt

Ψ+
◦ α−s

Φ = αt
Ψ+

• Surface energies? Ws(Λ) := lim
Λ′→Zd

(Hs(Λ′)− Hs(Λ)− Hs(Λ′ \ Λ))

Theorem Jaksic, Pillet, Szczepanek, T. ’25
For Φ,Ψ+ ∈ Bsd, assume that it exists ε > 0 such that Ws(Λ) exists for all |s| < ε and Λ ∈ F and satisfy

lim
Λ→Zd

Ws(Λ)

|Λ| = 0. Then EΨ+ ∈ C(αΦ).

Prop: Surface energy assumption holds for Φ ∈ Bdiam
γ (γ > 2d) and Ψ+ ∈ Bdiam

γ (γ > d) (Anna’s talk)
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Conservation of relative entropy

Proposition

For Φ,Ψ+ ∈ Bsd, assume that s(ν ◦ αt
Φ) = s(ν) for all ν ∈ SI and (ω+,Ψ+) regular. Then the following

statements are equivalent

1. s(ν ◦ αt
Φ|ω+) = s(ν|ω+) for all t ∈ R and ν ∈ SI

2. EΨ+ ∈ C(αΦ)

Prop: Conservation of relative entropy holds for Φ ∈ Bf and Ψ+ ∈ B3r with ‖Ψ+‖r < r (or Ψ+ ∈ Bf if d = 1)
(Anna’s talk)
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Back to constants of motion

Let Φ ∈ Bsd and let A ∈ C(αΦ). Consider

const = {c1|c ∈ R}, I = spanR{B − τ x(B)|B ∈ Ureal, x ∈ Zd}.

B ∈ I iff ν(B) = 0 for all ν ∈ SI. Consequently, for A ∈ C(αΦ) and B ∈ I one has

ν ◦ αt
Φ(λA + B + c1) = ν(λA + B + c1)

Definition
The set of distinct constants of motion is C(αΦ)

C(αΦ) = {[A],A ∈ C(αΦ)} ⊂ Ureal/(I + const)
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Non-integrable systems

Theorem Jaksic, Pillet, Szczepanek, T. ’25
Let ω ∈ SI and Φ ∈ Bsd. Suppose that Seq(β∗,Φ) = {νeq} with (νeq,Φ) regular, and moreover that ω is
admissible for νeq. Let ω+ ∈ S+(ω,Φ) and assume ω+ ∈ Seq(1,Ψ+) with Ψ+ ∈ Bsd. Moreover assume that

C(αΦ) = {λ[EΦ], λ ∈ R}

Then EΨ+ ∈ C(αΦ) implies ω+ = νeq.

The regularity of (ω+,Ψ+) is not necessary in that case. The proof relies on the concept of physical
equivalence from Ruelle.

Recent results on proving the non-integrability (= no other constant of motion) of a large class of 1D-models,
also extended to higher D.

Shirashi ’19, Yamaguchi, Chiba, Shiraishi ’24, Shirashi, Tasaki ’25,...
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Conclusion

Theorem Jaksic, Pillet, Szczepanek, T. ’25
Let ω ∈ SI and Φ ∈ Bsd. Suppose that Seq(β∗,Φ) = {νeq} with (νeq,Φ) regular, and moreover that ω is
admissible for νeq. For ω+ ∈ S+(ω,Φ), the following statements are equivalent:

1. ω+ = νeq

2. ω+ ∈ Seq(1,Ψ+) with Ψ+ ∈ Bsd such that (ω+,Ψ+) is regular, and EΨ+ ∈ C(αΦ).

• Approach to Thermal Equilibrium (ATE) requires the existence of Ψ+ such that ω+ ∈ Seq(1,Ψ+)

• Its validity relies only on the properties of Ψ+. Proving ATE it is a trade-off between:
• Establishing decay properties of Ψ+ in specific models.

(Ex: ATE holds if d = 1 and Ψ+ ∈ Bf)
• Establishing structural results for quantum spin systems.

(Ex: Show that all pairs (ω+,Ψ+) are regular for Ψ+ ∈ Bsd)

• Conservation laws and constants of motion play a central role

• ATE also holds for non-integrable models with a single constant of motion, provided that EΨ+ ∈ C(αφ).
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Perspectives

The problem of approach to equilibrium opens many directions for our program:

• Approach to (constrained) equilibrium in presence of several constants of motion

• General study of constant of motion

• ATE in explicit models

Thank you for your attention!
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