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Quantum lattice spin systems

o Lattice Z9 with a family of translations 7, for x € Z¢
o F := finite subsets of Z¢

o Fixed Hilbert space Hq := CN

o Hy = Ho for every x € Z9
0 Hx := QxexHx for X € F, and Ux := bounded operators on Hx

oUx3AR AR Ly €U for XC X eF

o Local observables Uioc 1= Uy Ux

o Spin C*-algebra U := norm-completion of Uy,

o Translation invariant states:

S; = {p: U — C| p positive, linear, p(1) =1 and po7, = p Vx € Z9}



Interactions, local Hamiltonians, dynamics

o Interaction: a family {®(X)}xer such that ®(X) € Ux is self-adjoint.

We assume translation invariance: V,cz¢ xer Tx(®(X)) = &(X + x)

o Ha(®) = ) &(X) is the local Hamiltonian on A € F
XCA

o

Corresponding local dynamics on A:

afb,/\(A) = ltM(®) Ao —1THN®) A € 1y

(+]

We say the (global) dynamics exists if for A € U the limit
E(A) = i EA(A
ag(A) A'T%‘d ag A(A)

exists and is uniform for t in compact sets.

Time evolution of a state: p; := po o

©

A1 Z9 is the limit over an increasing and exhaustive family of cubes in Z? centred at 0 J




Spaces of interactions

o Big space of interactions B, = {® | [|®||, < co} where
[
1@l =
PR

o Exponentially decaying interactions B" = {® | ||®||, < oo}, r >0

o], = > e XV o(x)]

X30
B" C By, both are Banach spaces, and B; is a dense subset of each
o ae may not exist for ¢ € B,

o o does exist for & € B"

o Finite range interactions:

Bi = {® | Fgen diam(X) > R = ®(X) =0}



Conserved quantities

Let ® € By, and p,w € ;. Notation: pp € Up is s.t. p(A) = tr(paA) for all A € Up
o Specific entropy

s(p) = — Aingd mr tr(oalog(pn)) € [0, log N]

Always exists, is affine and upper semi-continuous.

o Specific energy

Eo =Y r®(X)

X30
Satisfies limpzs 3 p(HA(®)) = p(Eo) for p € S1.
o Specific relative entropy (assuming the limit exists)

s(plw) := lim, 7 tr(pa(log pa — logwa)) > 0



Conserved quantities

Let ® € By, and p,w € ;. Notation: pp € Up is s.t. p(A) = tr(paA) for all A € Up
o Specific entropy

s(p) = —Ai&“d mr tr(oalog(pn)) € [0, log N]

Always exists, is affine and upper semi-continuous.

o Specific energy

Eo =Y r®(X)

X30
Satisfies limpzs 3 p(HA(®)) = p(Eo) for p € S1.
o Specific relative entropy (assuming the limit exists)

s(plw) := lim, 7 tr(pa(log pa — logwa)) > 0

CL for specific entropy and energy. For ® € B", p € S, t € R:
o s(poab)=-s(p) [Lanford-Robinson'68]
o (poak)(Ee) = p(Es) [Jaksi¢-Pillet-Tauber'24]




diam-spaces & Lieb—Robinson bound

Set v > 0 and consider B{#™ = {¢ | ||| < oo} with

~v,diam

11y, diam = D IX]|[diam(X)][|&(X)]

° Bgiam is a Banach space, B is its dense subset, and Bf}iam c Bp

o By»™ and B’ are incomparable

Thm [Nachtergaele-Sims-Young'19] Let ¢ € Bﬁjiam withy>d,and0<e<y—d

o Dynamics ag exists
o Lieb-Robinson bound: Let t € R, Ag C A, and A € Up,.

3e: >0 [lab(A) = ag (A < cllAlllAol(1 + dist(Ao, 27 \ A)) =079

CL for specific entropy and energy [Jaksi¢-Pillet-S-Tauber'25]
Let ® € BJ*™ with y >2d, pe S), t €R

s(poag) =s(p) and (poag)(Es) = p(Eo).




CLs for diam-spaces: energy 1/3

o For B, the proofs of CL for energy and entropy are completely different

o For B;iiam, the Lieb—Robinson bound is the main tool for both CLs
This proof strategy was pointed out by Wreszinski:

o W. F. Wreszinski: Irreversibility, the time arrow and a dynamical proof of
the second law of thermodynamics. Quantum Stud.: Math. Found. 7 (2020)

o W. F. Wreszinski: The second law of thermodynamics as a deterministic
theorem for quantum spin systems. Rev. Math. Phys. 35 (2023)

CL for specific energy: sketch of the proof



CLs for diam-spaces: energy 1/3

o For B, the proofs of CL for energy and entropy are completely different
o For B;iiam, the Lieb—Robinson bound is the main tool for both CLs
This proof strategy was pointed out by Wreszinski:

o W. F. Wreszinski: Irreversibility, the time arrow and a dynamical proof of
the second law of thermodynamics. Quantum Stud.: Math. Found. 7 (2020)

o W. F. Wreszinski: The second law of thermodynamics as a deterministic
theorem for quantum spin systems. Rev. Math. Phys. 35 (2023)

CL for specific energy: sketch of the proof
For A € F:
(00 ab A)(HA(®)) = p(! (P Hy(@)e ™) = p(Hp()),

which gives

/{'&‘ (P o ag A)(HA(®)) = /{inQdWI\P(H/\(q’)) = p(Eo).

On the other hand,

lim i1(0 ) (HA(®)) = (9o ab)(Eo).



CLs for diam-spaces: energy 2/3

Let & € BJ»™ with v > 2d, p € S/, t € R. Then

/{i&{,ﬁI(p © a)(HA(®)) — (p 0 a2 ) (HA(®))| = 0.

(o a§)(HA(®)) = (p o ab ) (HA(®))] = [p(ab(Ha(®)) = ab A(HA(#))) |
< llab(HA(®)) = ab A(HA(®))]
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CLs for diam-spaces: energy 2/3

Let & € BJ»™ with v > 2d, p € S/, t € R. Then

AiTerlTl‘Haﬁ)(HA(q))) — ag A(HA(®))|| = 0.

Let A be a cube and Ag a sub-cube. Define
Fnn (W) := HA(®) — Hp (®).

lloe (HA(®)) — o A (HA(®))]

< o (Ha () =g A(Hao (@)1l (Anng (WD) I1+ e a(Fnng (®)))]
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Let & € BJ»™ with v > 2d, p € S/, t € R. Then

AiTerlTl‘Haﬁ)(HA(q))) — ag A(HA(®))|| = 0.

Let A be a cube and Ag a sub-cube. Define
Fnn (W) := HA(®) — Hp (®).

lloe (HA(®)) — o A (HA(®))]
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CLs for diam-spaces: energy 2/3

Let & € BJ»™ with v > 2d, p € S/, t € R. Then

AiTerlTl‘Haﬁ)(HA(q))) — ag A(HA(®))|| = 0.

Let A be a cube and Ag a sub-cube. Define
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CLs for diam-spaces: energy 2/3

Let & € BJ»™ with v > 2d, p € S/, t € R. Then

/{iTerlTl‘Hafb(HA(q))) — ag A(HA(®))|| = 0.

Let A be a cube and Ag a sub-cube. Define
Fnn (W) := HA(®) — Hp (®).

lloe (HA(®)) — o A (HA(®))]

< g (Hno(®))—ab a(Hao (@) + 2 [|Aro(®)]]

< [Hao(®)lsupacuy, |0 (A) = aba(A) + 2 [[Ara(®)]
llAlI<1

< alfo|- [ealol (1 + dist(Aog, Z9 \ A)) 7] 4 c5| A\ Ao

(because [[Ha, (P)II < > xrngz0 [P < Aol Xoxs0 19X < [Aofer)



CLs for diam-spaces: energy 2/3

Let & € BJ»™ with v > 2d, p € S/, t € R. Then

lim i b (Ha (@) = o a(HA(@))] = 0.

Let A be a cube and Ag a sub-cube. Define
Fnn (W) := HA(®) — Hp (®).
rllab (HA(®)) — ab A(HA(®))]
<t llo% (Hno (®)) = b a(Hao (@) | + 12 1 Aaao (@)l

< 3l HA (@)l supacuy, [l (A) — al a(A)l| + A1l Arne (@)
lAlI<1

< alfil - [eal Aol (1 + dist(Ao, 29 \ ) 77+H] 4 ¢ 00l



CLs for diam-spaces: energy 2/3

Let & € BJ»™ with v > 2d, p € S/, t € R. Then

lim i b (Ha (@) = o a(HA(@))] = 0.

Let A be a cube and Ag a sub-cube. Define
Fnn (W) := HA(®) — Hp (®).
a6 (HA(®)) — ag A(HA(®))]]
<t llo% (Hno (®)) = b a(Hao (@) | + 12 1 Aaao (@)l

< 3l HA (@)l supacuy, [l (A) — al a(A)l| + A1l Arne (@)
lAlI<1

< alfil - [eal Aol (1 + dist(Ao, 29 \ ) 77+H] 4 ¢ 00l

Can we construct families A, Ag such that limyyzq ... = 07



CLs for diam-spaces: energy 3/3

Lemma. Assume v > 2d. Let A be a family of cubes such that A 1 Z¢ and denote
the side of A by L. There exists p € (0,1) s.t. the sub-cubes Ag = (1 — L,”)A
satisfy

(I) “m/\Tzd IA‘\/\/l\O‘ = 0,

(i) limapze|Ao|(1 + dist(Ag, Z9 \ A))~7H9Te =0 for any 0 < e < v — 2d.

(ii) Since [Ao] = (1 — L;p)dL;'( and dist(Ag, Z9 \ A) = Ly P, we obtain
Aol (1 + dist(Ag, 24 \ A))~7Hete < [§-(PIy=d=)

It follows that d < (1—p)(y—d —€)if 0 < p < po with pg := 7{_2:_*:, so (ii) holds

— CL for specific energy holds for ¢ ¢ Bgiam with v > 2d



Conserved quantities

Let ® € By, and p,w € ;. Notation: pp € Up is s.t. p(A) = tr(paA) for all A € Up
o Specific entropy

s(p) = —Ai&“d mr tr(oalog(pn)) € [0, log N]

Always exists, is affine and upper semi-continuous.

o Specific energy

Eo =Y r®(X)

X30
Satisfies limpzs 3 p(HA(®)) = p(Eo) for p € S1.
o Specific relative entropy (assuming the limit exists)

s(plw) := lim, 7 tr(pa(log pa — logwa)) > 0

CL for specific entropy and energy. Let ® € B" with r> 0 or Bgiam with v > 2d
o s(poag) =s(p)
5 (poab)(Es) = p(Es)




CL for relative entropy via Regularity

Let W € By. Pressure Py = ,UT% ﬁ log(tr(e”M¥))) < o0
o Gibbs variational principle: Py = sup,cs,(s(p) — p(Ev))
o Equilibrium states: Seq(V) = {p € S/ | Py = s(p) — p(Ew)}

Definition. Let w € 81, W € By. We call (w, V) a regular pair if

Vv € Si(U) s(v|w) exists and s(v|w) = —s(v) + v(Ey) + Py

o (w, V) is regular = w € Seq(V)

o R-Conjecture: (w, V) is regular for every reasonable ¥ and w € Seq(V)



CL for relative entropy via Regularity

Let W € By. Pressure Py = ,UT% ﬁ log(tr(e”M¥))) < o0
o Gibbs variational principle: Py = sup,cs,(s(p) — p(Ev))
o Equilibrium states: Seq(V) = {p € S/ | Py = s(p) — p(Ew)}

Definition. Let w € 81, W € By. We call (w, V) a regular pair if
Vv € Si(U) s(v|w) exists and s(v|w) = —s(v) + v(Ey) + Py

o (w, V) is regular = w € Seq(V)

o R-Conjecture: (w, V) is regular for every reasonable ¥ and w € Seq(V)

CL for regularity: if (w, V) regular, then (w; = w o af, V;) regular for some W, J

Obs. CL for regularity, Py, = Py,, and ¥, v¢(Ey,) = v(Ey,) = CL for rel. entropyJ

s(v|w) = —s(v) + v(Ey,) + Py,
= —s(v) + l/t(E\ut) + Py, = s(velwe)



CL for relative entropy via weak Gibbsianity

Def. w € ) is weak Gibbs for W € B, if there exist constants Cp > 0 s.t.

_1 e ) e~ H(¥) log Ca

<wp < and lim

N tre—Ha(¥) = Mer e Fn(¥) amzd || =0

0 Swg(W) 1= set of weak Gibbs states for W
0 wE Syeg(V) = (w, V) is regular = w € Sq(V)

o Theorem: Sy (V) = Seq(V) if W€ B  and |V, <r,or Ve Brandd=1
[Jaksi¢-Pillet-Tauber'24]



CL for relative entropy via weak Gibbsianity

Def. w € ) is weak Gibbs for W € B, if there exist constants Cp > 0 s.t.

_1 e ) e~ H(¥) log Ca

<wp < and lim

N tre—Ha(¥) = Mer e Fn(¥) amzd || =0

0 Swg(W) 1= set of weak Gibbs states for W
0 wE Syeg(V) = (w, V) is regular = w € Sq(V)
o Theorem: Sy (V) = Seq(V) if W€ B  and |V, <r,or Ve Brandd=1

[Jaksi¢-Pillet-Tauber'24]

CL for weak Gibbsianity: if w € Sy(Wo), then wy € Syg(V¢) for some W,

Obs. CL for weak Gibbsianity, Py, = Py,, v+(Ev,) = v(Ey,) =
CL for relative entropy




CL for weak Gibbsianity: dressed Hamiltonians

Let &, Wy € By. Fix t € R and define
HA(t) = aga(Ha(Wo)) = e (@) Hy (W)l (@)
The corresponding translation-invariant interaction is uniquely defined as:
_ _1\IXI=1YI
V() =3 ()XY IHy(e)

o W, need not even be in B!
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Let &, Wy € By. Fix t € R and define
HA(t) == g\ (HA(Wo)) = e (O Hy (wo )eltHn(®)
The corresponding translation-invariant interaction is uniquely defined as:
— _1)IXI=1vi
V() =3 ()XY IHy(e)
o W, need not even be in B!

o Pressure and specific energy of W, exist, Py, = Py,, and Ey, = a;t(E\uo).
Thus v¢(Ew,) = (v 0 a§)(Ew,) = (v 0 af)(ag (Ew,)) = v(Ew,)

o If &, W, generate dynamics, {Ha}a generates dynamics of = a;t o gy, © al



CL for weak Gibbsianity: dressed Hamiltonians

Let &, Wy € By. Fix t € R and define
HA(t) == g\ (HA(Wo)) = e (O Hy (wo )eltHn(®)
The corresponding translation-invariant interaction is uniquely defined as:
— _1)IXI=1vi
V() =3 ()XY IHy(e)
o W, need not even be in B!

o Pressure and specific energy of W, exist, Py, = Py,, and Ey, = aq_,t(Ewo).
Thus v¢(Ew,) = (v 0 a§)(Ew,) = (v 0 af)(ag (Ew,)) = v(Ew,)

o If &, W, generate dynamics, {Ha}a generates dynamics of = a;t o gy, © al

CL for weak Gibbsianity: Assume that ® € B; and either
(a) d > 1 and Wy € B® for some r > 0 and such that || Wl|, < r, or
(b) d =1 and YV, € Bs.

Then w € Sye(Vo) = wr i=w o af, € Sye(WV¢) for [t| small enough.
Indim d =1 for all t € R.




CL for weak Gibbsianity: proof overview

Characterization of weak Gibbsianity [Jak3i¢—Pillet—Tauber'24]:
wr € Swg(Vy) iff

lim ﬁ log inf & = lim ﬁ log sup &
MZ4 Aty (we) (o (A) A2 Actl (@) _wy()(A)

=0

(we)—wy(e) is the local perturbation of w; by the surface energies:

W/\(t) = |im/\/TZd W/\J\/(t), where W/\,/\/(t) = H/\/(t) — H/\(t) — H/\/\A(t)

CL for surface energies [Jakgi¢—Pillet—S—Tauber'25]
Vier Wa(t) exists and  limpyze |%|||W/\(t)|| =0




CL for weak Gibbsianity: proof overview

Characterization of weak Gibbsianity [Jak3i¢—Pillet—Tauber'24]:
wr € Swg(Vy) iff

A A
lim - log inf wi(A) = lim & log sup wi(A)

/\TZd |/\| /?4€>Z/6A (wt)—W,\(t) (A) /\TZd |A| /?4€>Z/{0/\ (wt)—W/\(t)(A)

=0

(we)—wy(e) is the local perturbation of w; by the surface energies:
W/\(t) = |im/\/TZd W/\J\/(t), where W/\_’/\/(t) = H/\/(t) — H/\(t) — H/\/\A(t)

CL for surface energies [Jakgi¢—Pillet—S—Tauber'25]
Vier WAi(t) exists and limpqza |1T|||W/\(t)H =0

Key bound [Lenci—Rey-Bellet'05] For any A € Up such that A >0

o IM@I=lo, el o @e(A) w2l
(@)= wae)(A)




CL for weak Gibbsianity: Ruelle’'s bound

We need bounds for ||a/2(Wa(t))]| and ||ai_/f/VA(t)(W/\(t))||.

Ruelle’s bound ('69) Assume W € B". The map

R>s— ay(A) el

has an analytic extension to the strip | Im z| < 2H(|’H . For any z in this strip

log (A < [[Ale™*PAC,y  with G = (1= 2[[W|,|Imz])~".

Since [la®(Wa(t))|| = [[a%y, © ag(Wa(t))]| we simply use Ruelle’s bound twice.



CL for weak Gibbsianity: Ruelle’'s bound

We need bounds for |al/2(Wi(t))|| and ||ai_/f/VA(t)(W/\(t))||.

Ruelle’s bound ('69) Assume W € B". The map
R>s— ay(A) el

has an analytic extension to the strip |Im z| < 2H‘r|’\|,' For any z in this strip

& (A)|| < ||AllesPPAIC, v with C,w = (1 — 2||V||,|Im z|)~.
v s P r

Since [la®(Wa(t))|| = [[a%y, © ag(Wa(t))]| we simply use Ruelle’s bound twice.
The perturbed dynamics is more problematic. Since

S _ S S
Qi (t) = Qza\a © OA
we need an analogous bound for restricted dynamics

s _ —t s t d
Ak = Qg © Ay, © Qg|s K CZE



CL for weak Gibbsianity: Ruelle's bound

ai(4)




CL for weak Gibbsianity: Ruelle's bound

aj(A)
supp (@ (4)) CAUA




CL for weak Gibbsianity: Ruelle's bound

aj(A)
supp (@} (4)) CAUA

Ay (aSA(A))

sy 5 (@H (A < NIA] !4



CL for weak Gibbsianity: Ruelle’'s bound

A as (A)
supp(a}(4)) cAUA

a5 (aj\(A))

sy o (@A) 11 < [IA] /AN

What we should see on RHS:
AUA)N(ZI\A AN(ZN\A
o/ AUANEZAA) _ IAN(ZNA)l 1A



CL for weak Gibbsianity: Ruelle’'s bound

d _—t t
Let K C Z% and A € Ujpc. Recall that aj = Qg © afl,olK 0 Qg

Ruelle’s bound generalized. Assume W € B’. The map

R > s ay, (A) el

r
2[[w |,

lag, (A < A PPAMIC, y  with Cow = (1 2|V [Imz])~

has an analytic extension to the strip | Im z| < . For any z in this strip




CL for weak Gibbsianity: Ruelle’'s bound

d _ -t
Let K C Z% and A € Uoc. Recall that o = oy 00, © afblK.
Ruelle’s bound generalized. Assume W € B’. The map

R3s0 ay,(A)eUd

has an analytic extension to the strip | Im z| < W For any z in this strip

lag, (A < A PPAMIC, y  with Cow = (1 2|V [Imz])~

Bound for composite dynamics. Assume W, € B3 such that ||W,||, < r and
® € Br. Set R =range® and T = (2|, C,wpe™)

For all |t| < To the map
R 3> s— aj(A)

has an analytic extension to the strip |Im z| < m For any z in this strip

G,
ok (A < [JAle2rsurpATHl Sz




CL for weak Gibbsianity: Araki's bound in dim =1

Let W € B; and Fy(x) :=exp(n— R+ 1)x + 225':1 %) with R := range ¥

Araki’s bound ('69): For every A € U,c, the map
R 3 s— ay(A)
has an analytic extension to the whole complex plane, and for any z € C

lo (Al < Fa(Culz])IAll,

where n = max{diam(suppA), R — 1} and Gy = 2(R + 1)||V¥||s




CL for weak Gibbsianity: Araki's bound in dim =1
Let W € B; and Fy(x) :=exp(n— R+ 1)x + 225:1 %) with R :=range ¥

Araki’s bound ('69): For every A € U,c, the map
R 3 s— ay(A)
has an analytic extension to the whole complex plane, and for any z € C

lo (Al < Fa(Culz])IAll,

where n = max{diam(suppA), R — 1} and Gy = 2(R + 1)||V¥||s

Araki’s bound generalized: Additionally, let K C Z. For every A € Ujqec,
R > s — ay, (A)
has an analytic extension to the whole complex plane, and for any z € C

log, (Al < Fa(Cul2])[|All,

where n = max{diam(suppAN K), R — 1} and Cy = 2(R + 1)||¥||s



CL for weak Gibbsianity: proof recap

Recall for any A € Up such that A > 0 we have

1@l @l o @A) i@l 2w

T (wWe)-wa(n)(A)

(1)

©

Using the Lieb-Robinson bound: I|m |A| [[WA(1)]] = 0,

o

Using Ruelle/Araki generalized bounds:

lim il 2(Wa(e) =0 and  lim gyl (Wa(D)

o

ﬁ log() of each bound in (1) goes to zero as A 1 Z¢

o

So wy € Swg(Wy), i.e., CL for weak Gibbsianity holds

=0.



CL for weak Gibbsianity/regularity & relative entropy

CL for weak Gibbsianity: Assume that ® € B; and either

(a) d > 1 and Wy € B for some r > 0 and such that ||Wyl|, < r, or
(b) d =1 and V¥, € Bs.

Then w € Sye(Vo) = wr € Sye(Ve) for [t] < To.

In dim d = 1 one can take Ty = co.

CL for weak Gibbsianity, Py, = Py, and v:(Ey,) = v(Ey,)
— CL for relative entropy

Recall that under (a) or (b) we have
w € Sye(Vo) <= (w, V) regular <= w € Seq(Vo)

In consequence: CL for regularity




Summary of new ClLs. Let v € S;and t € R

CL for specific entropy and energy. Let ® € BY*™ with v > 2d. Then
o s(vt) =s(v)

Q Vt(Eq)) = I/(E¢)

CL for specific relative entropy. Assume that ® € B; and either
(a) d >1and Wy € B such that || Wy]|, < r, or

(b) d =1 and YV, € Bs.
If (w, Vo) is regular, then s(v;|w;) exists and s(v¢|w:) = s(v|w) if |t] < To.

In dim d = 1 we can take Ty = co.




Summary of new ClLs. Let v € S;and t € R

CL for specific entropy and energy. Let ® € BY*™ with v > 2d. Then
s(ve) = s(v)
Vt(Eq)) = V(E¢)

CL for specific relative entropy. Assume that ® € B; and either
(a) d >1and Wy € B such that || Wy]|, < r, or

(b) d =1 and YV, € Bs.
If (w, Vo) is regular, then s(v;|w;) exists and s(v¢|w:) = s(v|w) if |t] < To.

In dim d = 1 we can take Ty = co.

CL for weak Gibbsianity/regularity. Under the same assumptions:
there exists W, such that w; € Sug(V4), i-e., (we, Vi) is regular

CL for surface energies Let ® € BS*™ with v > 2d and W, € BJ*™ with 4/ > 0.
Then W (t) exists for every t € R, and limy;z4 ﬁHW/\(t)H =0
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Bonus: Hiai—Petz type bound

vanishing of surface energies = if exists, specific relative entropy

lim ﬁH Wi(t)|| =0 does not increase along the trajectory
MZ

Thm. Assume ¢ € Bgiam with v > 2d and Wy € B" with any r > 0.
Let w € Seq(Wo) and v € S;. Then

IiTT;ljp |/1T|5((Vt)/\‘(wt)/\) < —=s(v) + v(Ew,) + Pu,.

In particular, if (Wo,w) is regular, then

'ir)\ﬂégp ArS((Woal(wen) < s(v|w),

and if s(v|w;) exists, then
S(l/t|wt) S S(V|LU).




