Dynamical Conservation Laws in Quantum Spin Systems

(useful to study Approach to Equilibrium)

V. Jakšić, C.-A. Pillet, A. Szczepanek, C. Tauber

CY Cergy Paris Université

Quantissima sur Oise September 2025

Dynamical Conservation Laws in Quantum Spin Systems

(useful to study Approach to Equilibrium)

V. Jakšić, C.-A. Pillet, A. Szczepanek, C. Tauber

- V. Jakšić, C.-A. Pillet, C. Tauber: Approach to equilibrium in translation-invariant quantum systems: Some structural results. Annales Henri Poincaré 25, 2024
- V. Jakšić, C.-A. Pillet, C. Tauber: A note on adiabatic time evolution and quasi-static processes in translation-invariant quantum systems. Annales Henri Poincaré 25, 2024
- V. Jakšić, C.-A. Pillet, AS, C. Tauber: Dynamical conservation laws in quantum spin systems, in preparation
- V. Jakšić, C.-A. Pillet, AS, C. Tauber: Approach to equilibrium in translation-invariant quantum systems: Some structural results II, in preparation

Quantum lattice spin systems

- Lattice \mathbb{Z}^d with a family of translations τ_x for $x \in \mathbb{Z}^d$
- \circ $\mathcal{F} :=$ finite subsets of \mathbb{Z}^d
- Fixed Hilbert space $\mathcal{H}_0 := \mathbb{C}^N$
- $\mathcal{H}_x := \mathcal{H}_0$ for every $x \in \mathbb{Z}^d$
- $\mathcal{H}_X := \otimes_{x \in X} \mathcal{H}_x$ for $X \in \mathcal{F}$, and $\mathcal{U}_X :=$ bounded operators on \mathcal{H}_X
- $\quad \circ \ \mathcal{U}_X \ni A \mapsto A \otimes \mathbf{1}_{\tilde{X} \setminus X} \in \mathcal{U}_{\tilde{X}} \ \text{for} \ X \subset \tilde{X} \in \mathcal{F}$
- ullet Local observables $\mathcal{U}_{\mathrm{loc}} := igcup_{X \in \mathcal{F}} \mathcal{U}_X$
- ullet Spin C*-algebra $\mathcal{U}:=$ norm-completion of $\mathcal{U}_{\mathrm{loc}}$
- Translation invariant states:

$$\mathcal{S}_I = \{ \rho \colon \mathcal{U} \to \mathbb{C} \mid \rho \text{ positive, linear, } \rho(\mathbf{1}) = \mathbf{1} \text{ and } \rho \circ \tau_{\mathsf{x}} = \rho \ \ \forall \mathsf{x} \in \mathbb{Z}^d \}$$

Interactions, local Hamiltonians, dynamics

- Interaction: a family $\{\Phi(X)\}_{X\in\mathcal{F}}$ such that $\Phi(X)\in\mathcal{U}_X$ is self-adjoint. We assume translation invariance: $\forall_{x\in\mathbb{Z}^d,X\in\mathcal{F}}$ $\tau_x(\Phi(X))=\Phi(X+x)$
- $H_{\Lambda}(\Phi) = \sum_{X \subset \Lambda} \Phi(X)$ is the **local Hamiltonian** on $\Lambda \in \mathcal{F}$
- Corresponding local dynamics on Λ:

$$\alpha_{\Phi,\Lambda}^{\it t}(A)={\rm e}^{{\rm i}\it t H_{\Lambda}(\Phi)}A{\rm e}^{-{\rm i}\it t H_{\Lambda}(\Phi)},\quad A\in\mathcal{U}_{\Lambda}$$

• We say the **(global) dynamics exists** if for $A \in \mathcal{U}$ the limit

$$\alpha_{\Phi}^{t}(A) := \lim_{\Lambda \uparrow \mathbb{Z}^d} \alpha_{\Phi,\Lambda}^{t}(A)$$

exists and is uniform for t in compact sets.

• Time evolution of a state: $\rho_t := \rho \circ \alpha_\Phi^t$

 $\Lambda \uparrow \mathbb{Z}^d$ is the limit over an increasing and exhaustive family of cubes in \mathbb{Z}^d centred at 0

Spaces of interactions

ullet Big space of interactions $\mathcal{B}_{\mathrm{b}} = \{\Phi \mid \|\Phi\|_{\mathrm{b}} < \infty\}$ where

$$\|\Phi\|_{\mathbf{b}} = \sum_{X \ni 0} \frac{\|\Phi(X)\|}{|X|}$$

• Exponentially decaying interactions $\mathcal{B}^r = \{\Phi \mid \|\Phi\|_r < \infty\}, r > 0$

$$\|\Phi\|_{r} = \sum_{X\ni 0} e^{r(|X|-1)} \|\Phi(X)\|$$

 $\mathcal{B}^r\subset\mathcal{B}_{\mathrm{b}}$, both are Banach spaces, and \mathcal{B}_{f} is a dense subset of each

- α_{Φ} may not exist for $\Phi \in \mathcal{B}_b$
- α_{Φ} does exist for $\Phi \in \mathcal{B}^r$
- Finite range interactions:

$$\mathcal{B}_{\mathrm{f}} = \{ \Phi \mid \exists_{R \in \mathbb{N}} \operatorname{diam}(X) > R \Rightarrow \Phi(X) = 0 \}$$

Conserved quantities

Let $\Phi \in \mathcal{B}_b$ and $\rho, \omega \in \mathcal{S}_I$. Notation: $\rho_{\Lambda} \in \mathcal{U}_{\Lambda}$ is s.t. $\rho(A) = \operatorname{tr}(\rho_{\Lambda}A)$ for all $A \in \mathcal{U}_{\Lambda}$

Specific entropy

$$s(
ho) := -\lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \operatorname{tr}(
ho_\Lambda \log(
ho_\Lambda)) \in [0, \log N]$$

Always exists, is affine and upper semi-continuous.

Specific energy

$$E_{\Phi} := \sum_{X \ni 0} \frac{1}{|X|} \Phi(X)$$

Satisfies $\lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \rho(H_{\Lambda}(\Phi)) = \rho(E_{\Phi})$ for $\rho \in \mathcal{S}_I$.

Specific relative entropy (assuming the limit exists)

$$s(
ho|\omega) := \lim_{\Lambda\uparrow\mathbb{Z}^d} rac{1}{|\Lambda|} \operatorname{tr}(
ho_\Lambda(\log
ho_\Lambda - \log\omega_\Lambda)) \geq 0$$

Conserved quantities

Let $\Phi \in \mathcal{B}_b$ and $\rho, \omega \in \mathcal{S}_I$. Notation: $\rho_{\Lambda} \in \mathcal{U}_{\Lambda}$ is s.t. $\rho(A) = \operatorname{tr}(\rho_{\Lambda}A)$ for all $A \in \mathcal{U}_{\Lambda}$

Specific entropy

$$s(\rho) := -\lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \operatorname{tr}(\rho_{\Lambda} \log(\rho_{\Lambda})) \in [0, \log N]$$

Always exists, is affine and upper semi-continuous.

Specific energy

$$E_{\Phi} := \sum_{X \supset 0} \frac{1}{|X|} \Phi(X)$$

Satisfies $\lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \rho(H_{\Lambda}(\Phi)) = \rho(E_{\Phi})$ for $\rho \in \mathcal{S}_I$.

• Specific relative entropy (assuming the limit exists)

$$s(
ho|\omega) := \lim_{\Lambda\uparrow\mathbb{Z}^d} rac{1}{|\Lambda|} \operatorname{tr}(
ho_\Lambda(\log
ho_\Lambda - \log\omega_\Lambda)) \geq 0$$

CL for specific entropy and energy. For $\Phi \in \mathcal{B}^r$, $\rho \in \mathcal{S}_I$, $t \in \mathbb{R}$:

- $\circ \ \mathit{s}(\rho \circ \alpha_{\Phi}^t) = \mathit{s}(\rho) \hspace{1cm} [\mathsf{Lanford}\text{-}\mathsf{Robinson'68}]$
- $(\rho \circ \alpha_{\Phi}^t)(E_{\Phi}) = \rho(E_{\Phi})$ [Jakšić-Pillet-Tauber'24]

diam-spaces & Lieb-Robinson bound

Set $\gamma > 0$ and consider $\mathcal{B}_{\gamma}^{\mathrm{diam}} = \{\Phi \mid \|\Phi\|_{\gamma,\mathrm{diam}} < \infty\}$ with

$$\|\Phi\|_{\gamma,\mathrm{diam}} = \sum_{X \ni 0} |X| [\mathrm{diam}(X)]^{\gamma} \|\Phi(X)\|$$

- $\mathcal{B}_{\gamma}^{\mathrm{diam}}$ is a Banach space, \mathcal{B}_{f} is its dense subset, and $\mathcal{B}_{\gamma}^{\mathrm{diam}} \subset \mathcal{B}_{\mathit{b}}$
- $\circ \mathcal{B}_{\gamma}^{\text{diam}}$ and \mathcal{B}^r are incomparable

Thm [Nachtergaele-Sims-Young'19] Let $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma > d$, and $0 < \epsilon < \gamma - d$

- Dynamics α_{Φ} exists
- Lieb-Robinson bound: Let $t \in \mathbb{R}$, $\Lambda_0 \subset \Lambda$, and $A \in \mathcal{U}_{\Lambda_0}$.

$$\exists c_t > 0 \quad \|\alpha_{\Phi}^t(A) - \alpha_{\Phi,\Lambda}^t(A)\| \leq c_t \|A\| |\Lambda_0| (1 + \operatorname{dist}(\Lambda_0, \mathbb{Z}^d \setminus \Lambda))^{-(\gamma - d - \epsilon)}$$

CL for specific entropy and energy [Jakšić-Pillet-S-Tauber'25]

Let $\Phi \in \mathcal{B}_{\gamma}^{\text{diam}}$ with $\gamma > 2d$, $\rho \in \mathcal{S}_{I}$, $t \in \mathbb{R}$ $s(\rho \circ \alpha_{\Phi}^{t}) = s(\rho) \quad \text{and} \quad (\rho \circ \alpha_{\Phi}^{t})(E_{\Phi}) = \rho(E_{\Phi}).$

- ullet For \mathcal{B}^r , the proofs of CL for energy and entropy are completely different
- ullet For $\mathcal{B}_{\gamma}^{
 m diam}$, the **Lieb–Robinson bound is the main tool** for both CLs This proof strategy was pointed out by Wreszinski:
 - W. F. Wreszinski: Irreversibility, the time arrow and a dynamical proof of the second law of thermodynamics. Quantum Stud.: Math. Found. 7 (2020)
 - W. F. Wreszinski: The second law of thermodynamics as a deterministic theorem for quantum spin systems. Rev. Math. Phys. 35 (2023)

CL for specific energy: sketch of the proof

- ullet For \mathcal{B}^r , the proofs of CL for energy and entropy are completely different
- ullet For $\mathcal{B}_{\gamma}^{\mathrm{diam}}$, the **Lieb–Robinson bound is the main tool** for both CLs This proof strategy was pointed out by Wreszinski:
 - W. F. Wreszinski: Irreversibility, the time arrow and a dynamical proof of the second law of thermodynamics. Quantum Stud.: Math. Found. 7 (2020)
 - W. F. Wreszinski: The second law of thermodynamics as a deterministic theorem for quantum spin systems. Rev. Math. Phys. 35 (2023)

CL for specific energy: sketch of the proof

For $\Lambda \in \mathcal{F}$:

$$(\rho \circ \alpha^t_{\Phi,\Lambda})(H_{\Lambda}(\Phi)) = \rho(\mathrm{e}^{\mathrm{i}tH_{\Lambda}(\Phi)}H_{\Lambda}(\Phi)\mathrm{e}^{-\mathrm{i}tH_{\Lambda}(\Phi)}) = \rho(H_{\Lambda}(\Phi)),$$

which gives

$$\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}(\rho\circ\alpha^t_{\Phi,\Lambda})(H_{\Lambda}(\Phi))=\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}\rho(H_{\Lambda}(\Phi))=\rho(E_{\Phi}).$$

On the other hand,

$$\lim_{\Lambda + \mathbb{Z}_d} \frac{1}{|\Lambda|} (\rho \circ \alpha_{\Phi}^t) (H_{\Lambda}(\Phi)) = (\rho \circ \alpha_{\Phi}^t) (E_{\Phi}).$$

Let $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma > 2d$, $\rho \in \mathcal{S}_{I}$, $t \in \mathbb{R}$. Then

$$\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}|(\rho\circ\alpha^t_\Phi)(H_\Lambda(\Phi))-(\rho\circ\alpha^t_{\Phi,\Lambda})(H_\Lambda(\Phi))|=0.$$

$$|(\rho \circ \alpha_{\Phi}^{t})(H_{\Lambda}(\Phi)) - (\rho \circ \alpha_{\Phi,\Lambda}^{t})(H_{\Lambda}(\Phi))| = \left| \rho \left(\alpha_{\Phi}^{t}(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda}(\Phi)) \right) \right|$$

$$< \|\alpha_{\Phi}^{t}(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda}(\Phi))\|$$

Let $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma > 2d$, $\rho \in \mathcal{S}_{I}$, $t \in \mathbb{R}$. Then

$$\lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| = 0.$$

$$|(\rho \circ \alpha_{\Phi}^{t})(H_{\Lambda}(\Phi)) - (\rho \circ \alpha_{\Phi,\Lambda}^{t})(H_{\Lambda}(\Phi))| = \left| \rho \left(\alpha_{\Phi}^{t}(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda}(\Phi)) \right) \right|$$

$$< \|\alpha_{\Phi}^{t}(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda}(\Phi))\|$$

Let $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma > 2d$, $\rho \in \mathcal{S}_{I}$, $t \in \mathbb{R}$. Then

$$\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}\|\alpha_{\Phi}^t(H_{\Lambda}(\Phi))-\alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\|=0.$$

Let $\Phi \in \mathcal{B}_{\gamma}^{\text{diam}}$ with $\gamma > 2d$, $\rho \in \mathcal{S}_I$, $t \in \mathbb{R}$. Then

$$\lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| = 0.$$

Let
$$\Lambda$$
 be a cube and Λ_0 a sub-cube. Define

$$ilde{H}_{\Lambda,\Lambda_0}(\Psi):=H_{\Lambda}(\Phi)-H_{\Lambda_0}(\Phi).$$

$$\|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\|$$

$$\|\alpha_{\Phi}(H_{\Lambda}(\Psi)) - \alpha_{\Phi,\Lambda}(H_{\Lambda}(\Psi))\|$$

$$\leq \|\alpha_{\Phi}^{t}(H_{\Lambda_{0}}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda_{0}}(\Phi))\| + \|\alpha_{\Phi}^{t}(\tilde{H}_{\Lambda,\Lambda_{0}}(\Psi))\| + \|\alpha_{\Phi,\Lambda}^{t}(\tilde{H}_{\Lambda,\Lambda_{0}}(\Phi))\|$$

Let $\Phi \in \mathcal{B}_{\gamma}^{\text{diam}}$ with $\gamma > 2d$, $\rho \in \mathcal{S}_I$, $t \in \mathbb{R}$. Then

$$\lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| = 0.$$

$$ilde{\mathcal{H}}_{\Lambda,\Lambda_0}(\Psi):=\mathcal{H}_{\Lambda}(\Phi)-\mathcal{H}_{\Lambda_0}(\Phi).$$

$$\|\alpha_{\Phi}^{t}(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda}(\Phi))\|$$

$$\leq \quad \|\alpha_{\Phi}^t(H_{\Lambda_0}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda_0}(\Phi))\| + \ 2 \ \|\tilde{H}_{\Lambda,\Lambda_0}(\Phi)\|$$

$$\leq \|\alpha_{\Phi}^{\iota}(H_{\Lambda_0}(\Phi)) - \alpha_{\Phi,\Lambda}^{\iota}(H_{\Lambda_0}(\Phi))\| + 2 \|H_{\Lambda,\Lambda_0}(\Phi)\|$$

Let $\Phi \in \mathcal{B}_{\gamma}^{\operatorname{diam}}$ with $\gamma > 2d$, $\rho \in \mathcal{S}_I$, $t \in \mathbb{R}$. Then

$$\lim_{\Lambda + \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| = 0.$$

$$ilde{\mathcal{H}}_{\Lambda,\Lambda_0}(\Psi):=\mathcal{H}_{\Lambda}(\Phi)-\mathcal{H}_{\Lambda_0}(\Phi).$$

$$\|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\|$$

$$\leq \|\alpha_{\Phi}^{t}(H_{\Lambda_{0}}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda_{0}}(\Phi))\| + 2\|\tilde{H}_{\Lambda,\Lambda_{0}}(\Phi)\|$$

$$\leq \|H_{\Lambda_0}(\Phi)\|\sup_{A\in\mathcal{U}_{\Lambda_0}}\|\alpha_{\Phi}^t(A) - \alpha_{\Phi,\Lambda}^t(A)\| + 2\|\tilde{H}_{\Lambda,\Lambda_0}(\Phi)\|$$

Let $\Phi \in \mathcal{B}_{\gamma}^{\text{diam}}$ with $\gamma > 2d$, $\rho \in \mathcal{S}_{I}$, $t \in \mathbb{R}$. Then

$$\lim_{\Lambda + \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| = 0.$$

Let Λ be a cube and Λ_0 a sub-cube. Define

 $\|\alpha_{\Phi}^{t}(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda}(\Phi))\|$

$$\tilde{H}_{\Lambda,\Lambda_0}(\Psi):=H_{\Lambda}(\Phi)-H_{\Lambda_0}(\Phi).$$

$$\leq \|\alpha_{\Phi}^{t}(H_{\Lambda_{0}}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda_{0}}(\Phi))\| + 2 \|\tilde{H}_{\Lambda,\Lambda_{0}}(\Phi)\|$$

$$\leq \|H_{\Lambda_{0}}(\Phi)\| \sup_{A \in \mathcal{U}_{\Lambda_{0}}} \|\alpha_{\Phi}^{t}(A) - \alpha_{\Phi,\Lambda}^{t}(A)\| + 2 \|\tilde{H}_{\Lambda,\Lambda_{0}}(\Phi)\|$$

$$\leq \ c_1 |\Lambda_0| \cdot \left[c_2 |\Lambda_0| (1 + \operatorname{dist}(\Lambda_0, \mathbb{Z}^d \setminus \Lambda))^{-\gamma + d + \epsilon} \right] + c_3 |\Lambda \setminus \Lambda_0|$$

Let $\Phi \in \mathcal{B}_{\gamma}^{\text{diam}}$ with $\gamma > 2d$, $\rho \in \mathcal{S}_I$, $t \in \mathbb{R}$. Then

$$\lim_{\Lambda + \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| = 0.$$

$$ilde{\mathcal{H}}_{\Lambda,\Lambda_0}(\Psi):=\mathcal{H}_{\Lambda}(\Phi)-\mathcal{H}_{\Lambda_0}(\Phi).$$

$$\begin{split} \|\alpha_{\Phi}^{t}(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda}(\Phi))\| \\ &\leq \|\alpha_{\Phi}^{t}(H_{\Lambda_{0}}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda_{0}}(\Phi))\| + 2 \|\tilde{H}_{\Lambda,\Lambda_{0}}(\Phi)\| \\ &\leq \|H_{\Lambda_{0}}(\Phi)\| \sup_{A \in \mathcal{U}_{\Lambda_{0}}} \|\alpha_{\Phi}^{t}(A) - \alpha_{\Phi,\Lambda}^{t}(A)\| + 2 \|\tilde{H}_{\Lambda,\Lambda_{0}}(\Phi)\| \\ &\leq c_{1}|\Lambda_{0}| \cdot \left[c_{2}|\Lambda_{0}|(1 + \operatorname{dist}(\Lambda_{0}, \mathbb{Z}^{d} \setminus \Lambda))^{-\gamma + d + \epsilon}\right] + c_{3}|\Lambda \setminus \Lambda_{0}| \end{split}$$

(because
$$\|H_{\Lambda_0}(\Phi)\| \leq \sum_{X \cap \Lambda_0 \neq \emptyset} \|\Phi(X)\| \leq |\Lambda_0| \sum_{X \ni 0} \|\Phi(X)\| \leq |\Lambda_0| c_1$$
)

Let $\Phi \in \mathcal{B}_{\gamma}^{\text{diam}}$ with $\gamma > 2d$, $\rho \in \mathcal{S}_I$, $t \in \mathbb{R}$. Then

$$\lim_{\Lambda + \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| = 0.$$

Let Λ be a cube and Λ_0 a sub-cube. Define

 $\frac{1}{|\Lambda|} \| \alpha_{\Phi}^t (\mathcal{H}_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t (\mathcal{H}_{\Lambda}(\Phi)) \|$

$$\widetilde{H}_{\Lambda,\Lambda_0}(\Psi) := H_{\Lambda}(\Phi) - H_{\Lambda_0}(\Phi).$$

$$\leq \frac{1}{|\Lambda|} \|\alpha_{\Phi}^{t}(H_{\Lambda_{0}}(\Phi)) - \alpha_{\Phi,\Lambda}^{t}(H_{\Lambda_{0}}(\Phi))\| + \frac{2}{|\Lambda|} \|\tilde{H}_{\Lambda,\Lambda_{0}}(\Phi)\|$$

$$\leq \frac{1}{|\Lambda|} \|H_{\Lambda_{0}}(\Phi)\| \sup_{A \in \mathcal{U}_{\Lambda_{0}}} \|\alpha_{\Phi}^{t}(A) - \alpha_{\Phi,\Lambda}^{t}(A)\| + \frac{2}{|\Lambda|} \|\tilde{H}_{\Lambda,\Lambda_{0}}(\Phi)\|$$

$$\leq c_{1} \frac{|\Lambda_{0}|}{|\Lambda|} \cdot \left[c_{2}|\Lambda_{0}|(1 + \operatorname{dist}(\Lambda_{0}, \mathbb{Z}^{d} \setminus \Lambda))^{-\gamma + d + \epsilon}\right] + c_{3} \frac{|\Lambda \setminus \Lambda_{0}|}{|\Lambda|}$$

Let $\Phi \in \mathcal{B}_{\gamma}^{\operatorname{diam}}$ with $\gamma > 2d$, $\rho \in \mathcal{S}_I$, $t \in \mathbb{R}$. Then

$$\lim_{\Lambda + \mathbb{Z}^d} \frac{1}{|\Lambda|} \|\alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi))\| = 0.$$

Let Λ be a cube and Λ_0 a sub-cube. Define

$$\tilde{H}_{\Lambda,\Lambda_0}(\Psi) := H_{\Lambda}(\Phi) - H_{\Lambda_0}(\Phi).$$

$$\begin{split} &\frac{1}{|\Lambda|} \| \alpha_{\Phi}^t(H_{\Lambda}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda}(\Phi)) \| \\ &\leq \frac{1}{|\Lambda|} \| \alpha_{\Phi}^t(H_{\Lambda_0}(\Phi)) - \alpha_{\Phi,\Lambda}^t(H_{\Lambda_0}(\Phi)) \| + \frac{2}{|\Lambda|} \| \tilde{H}_{\Lambda,\Lambda_0}(\Phi) \| \\ &\leq \frac{1}{|\Lambda|} \| H_{\Lambda_0}(\Phi) \| \sup_{\|A\| \leq 1} \| \alpha_{\Phi}^t(A) - \alpha_{\Phi,\Lambda}^t(A) \| + \frac{2}{|\Lambda|} \| \tilde{H}_{\Lambda,\Lambda_0}(\Phi) \| \\ &\leq c_1 \frac{|\Lambda_0|}{|\Lambda|} \cdot \left[c_2 |\Lambda_0| (1 + \operatorname{dist}(\Lambda_0, \mathbb{Z}^d \setminus \Lambda))^{-\gamma + d + \epsilon} \right] + c_3 \frac{|\Lambda \setminus \Lambda_0|}{|\Lambda|} \end{split}$$

Can we construct families Λ , Λ_0 such that $\lim_{\Lambda\uparrow\mathbb{Z}^d}\ldots=0$?

Lemma. Assume $\gamma > 2d$. Let Λ be a family of cubes such that $\Lambda \uparrow \mathbb{Z}^d$ and denote the side of Λ by L_{Λ} . There exists $p \in (0,1)$ s.t. the sub-cubes $\Lambda_0 = (1-L_{\Lambda}^{-p})\Lambda$ satisfy

(i)
$$\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{|\Lambda\setminus\Lambda_0|}{|\Lambda|}=0$$
,

(ii)
$$\lim_{\Lambda \uparrow \mathbb{Z}^d} |\Lambda_0| (1 + \operatorname{dist}(\Lambda_0, \mathbb{Z}^d \setminus \Lambda))^{-\gamma + d + \epsilon} = 0$$
 for any $0 < \epsilon < \gamma - 2d$.

(ii) Since
$$|\Lambda_0| = (1 - L_{\Lambda}^{-p})^d L_{\Lambda}^d$$
 and $\operatorname{dist}(\Lambda_0, \mathbb{Z}^d \setminus \Lambda) = L_{\Lambda}^{1-p}$, we obtain
$$|\Lambda_0| (1 + \operatorname{dist}(\Lambda_0, \mathbb{Z}^d \setminus \Lambda))^{-\gamma + d + \epsilon} < L_{\Lambda}^{d - (1-p)(\gamma - d - \epsilon)}.$$

 \Longrightarrow CL for specific energy holds for $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma > 2d$

It follows that
$$d < (1-p)(\gamma-d-\epsilon)$$
 if $0 with $p_0 := \frac{\gamma-2d-\epsilon}{\gamma-d-\epsilon}$, so (ii) holds$

It follows that
$$a < (1-p)(\gamma-a-\epsilon)$$
 if $0 with $p_0 := \frac{1}{\gamma-d-\epsilon}$, so (ii) hold$

Conserved quantities

Let $\Phi \in \mathcal{B}_b$ and $\rho, \omega \in \mathcal{S}_I$. Notation: $\rho_{\Lambda} \in \mathcal{U}_{\Lambda}$ is s.t. $\rho(A) = \operatorname{tr}(\rho_{\Lambda}A)$ for all $A \in \mathcal{U}_{\Lambda}$

Specific entropy

$$s(
ho) := -\lim_{\Lambda + \mathbb{Z}^d} rac{1}{|\Lambda|} \operatorname{tr}(
ho_\Lambda \log(
ho_\Lambda)) \in [0, \log N]$$

Always exists, is affine and upper semi-continuous.

Specific energy

$$E_{\Phi} := \sum_{X \supset 0} \frac{1}{|X|} \Phi(X)$$

Satisfies $\lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \rho(H_{\Lambda}(\Phi)) = \rho(E_{\Phi})$ for $\rho \in \mathcal{S}_I$.

• Specific relative entropy (assuming the limit exists)

$$s(
ho|\omega) := \lim_{\Lambda\uparrow\mathbb{Z}^d} rac{1}{|\Lambda|} \operatorname{tr}(
ho_\Lambda(\log
ho_\Lambda - \log\omega_\Lambda)) \geq 0$$

CL for specific entropy and energy. Let $\Phi \in \mathcal{B}^r$ with r > 0 or $\mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma > 2d$

$$\circ s(\rho \circ \alpha_{\Phi}^t) = s(\rho)$$

CL for relative entropy via Regularity

Let $\Psi \in \mathcal{B}_b$. Pressure $P_{\Psi} := \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \log(\operatorname{tr}(e^{-H_{\Lambda}(\Psi)})) < \infty$

- Gibbs variational principle: $P_{\Psi} = \sup_{\rho \in \mathcal{S}_l} (s(\rho) \rho(E_{\Psi}))$
- $\qquad \qquad \text{Equilibrium states: } \mathcal{S}_{\rm eq}(\Psi) = \{\rho \in \mathcal{S}_I \mid P_\Psi = \textit{s}(\rho) \rho(\textit{E}_\Psi)\}$

<u>Definition</u>. Let $\omega \in \mathcal{S}_{I}$, $\Psi \in \mathcal{B}_{b}$. We call (ω, Ψ) a **regular pair** if

$$orall
u \in \mathcal{S}_{\mathrm{I}}(\mathcal{U}) \quad s(
u | \omega) ext{ exists and } s(
u | \omega) = -s(
u) +
u(E_{\Psi}) + P_{\Psi}$$

- ullet (ω, Ψ) is regular $\Longrightarrow \omega \in \mathcal{S}_{eq}(\Psi)$
- **R-Conjecture:** (ω, Ψ) is regular for every reasonable Ψ and $\omega \in \mathcal{S}_{eq}(\Psi)$

CL for relative entropy via Regularity

Let $\Psi \in \mathcal{B}_b$. Pressure $P_{\Psi} := \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \log(\operatorname{tr}(e^{-H_{\Lambda}(\Psi)})) < \infty$

- Gibbs variational principle: $P_{\Psi} = \sup_{\rho \in S_l} (s(\rho) \rho(E_{\Psi}))$
- Equilibrium states: $S_{eq}(\Psi) = \{ \rho \in S_I \mid P_{\Psi} = s(\rho) \rho(E_{\Psi}) \}$

<u>Definition</u>. Let $\omega \in \mathcal{S}_I$, $\Psi \in \mathcal{B}_b$. We call (ω, Ψ) a **regular pair** if

$$orall
u \in \mathcal{S}_{\mathrm{I}}(\mathcal{U}) \quad s(
u | \omega) ext{ exists and } s(
u | \omega) = -s(
u) +
u(E_{\Psi}) + P_{\Psi}$$

- ullet (ω,Ψ) is regular $\Longrightarrow \omega \in \mathcal{S}_{\mathrm{eq}}(\Psi)$
- ullet R-Conjecture: (ω,Ψ) is regular for every reasonable Ψ and $\omega\in\mathcal{S}_{\mathrm{eq}}(\Psi)$

CL for regularity: if (ω, Ψ) regular, then $(\omega_t = \omega \circ \alpha_{\Phi}^t, \Psi_t)$ regular for some Ψ_t

Obs. CL for regularity, $P_{\Psi_t} = P_{\Psi_0}$, and $\forall_{\nu} \ \nu_t(E_{\Psi_t}) = \nu(E_{\Psi_0}) \Rightarrow$ CL for rel. entropy

$$egin{aligned} s(
u|\omega) &= -s(\,
u\,) + \,
u(E_{\Psi_0}) + P_{\Psi_0} \ &= -s(
u_t) +
u_t(E_{\Psi_s}) + P_{\Psi_s} = \, s(
u_t|\omega_t) \end{aligned}$$

CL for relative entropy via weak Gibbsianity

 $\underline{\mathrm{Def}}.\ \omega \in \mathcal{S}_I$ is **weak Gibbs** for $\Psi \in \mathcal{B}_\mathrm{b}$ if there exist constants $\mathcal{C}_\Lambda > 0$ s.t.

$$C_{\Lambda}^{-1} \frac{\mathrm{e}^{-H_{\Lambda}(\Psi)}}{\mathrm{tr} \, \mathrm{e}^{-H_{\Lambda}(\Psi)}} \leq \omega_{\Lambda} \leq C_{\Lambda} \frac{\mathrm{e}^{-H_{\Lambda}(\Psi)}}{\mathrm{tr} \, \mathrm{e}^{-H_{\Lambda}(\Psi)}} \quad \text{ and } \quad \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{\log C_{\Lambda}}{|\Lambda|} = 0$$

- $\mathcal{S}_{\mathrm{wg}}(\Psi):=$ set of weak Gibbs states for Ψ
- $\bullet \ \omega \in \mathcal{S}_{\mathrm{wg}}(\Psi) \Longrightarrow (\omega, \Psi) \text{ is regular} \Longrightarrow \omega \in \mathcal{S}_{\mathrm{eq}}(\Psi)$
- Theorem: $S_{\text{wg}}(\Psi) = S_{\text{eq}}(\Psi)$ if $\Psi \in \mathcal{B}^r$ and $\|\Psi\|_r < r$, or $\Psi \in \mathcal{B}_f$ and d = 1[Jakšić-Pillet-Tauber'24]

CL for relative entropy via weak Gibbsianity

 $\underline{Def}.\ \omega\in\mathcal{S}_I \text{ is weak Gibbs for } \Psi\in\mathcal{B}_b \text{ if there exist constants } \mathcal{C}_\Lambda>0 \text{ s.t.}$

$$C_{\Lambda}^{-1} \frac{\mathrm{e}^{-H_{\Lambda}(\Psi)}}{\operatorname{tr} \mathrm{e}^{-H_{\Lambda}(\Psi)}} \leq \omega_{\Lambda} \leq C_{\Lambda} \frac{\mathrm{e}^{-H_{\Lambda}(\Psi)}}{\operatorname{tr} \mathrm{e}^{-H_{\Lambda}(\Psi)}} \quad \text{ and } \quad \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{\log C_{\Lambda}}{|\Lambda|} = 0$$

- $S_{wg}(\Psi) := \text{set of weak Gibbs states for } \Psi$
- $\bullet \ \omega \in \mathcal{S}_{\mathrm{wg}}(\Psi) \Longrightarrow (\omega, \Psi) \text{ is regular} \Longrightarrow \omega \in \mathcal{S}_{\mathrm{eq}}(\Psi)$
- Theorem: $S_{\text{wg}}(\Psi) = S_{\text{eq}}(\Psi)$ if $\Psi \in \mathcal{B}^r$ and $\|\Psi\|_r < r$, or $\Psi \in \mathcal{B}_f$ and d = 1[Jakšić-Pillet-Tauber'24]

CL for weak Gibbsianity: if $\omega \in \mathcal{S}_{wg}(\Psi_0)$, then $\omega_t \in \mathcal{S}_{wg}(\Psi_t)$ for some Ψ_t

Obs. CL for weak Gibbsianity,
$$P_{\Psi_t} = P_{\Psi_0}$$
, $\nu_t(E_{\Psi_t}) = \nu(E_{\Psi_0}) \Longrightarrow$

CL for relative entropy

CL for weak Gibbsianity: dressed Hamiltonians

Let $\Phi, \Psi_0 \in \mathcal{B}_b$. Fix $t \in \mathbb{R}$ and define

$$H_{\Lambda}(t) := \alpha_{\Phi,\Lambda}^{-t}(H_{\Lambda}(\Psi_0)) = e^{-itH_{\Lambda}(\Phi)}H_{\Lambda}(\Psi_0)e^{itH_{\Lambda}(\Phi)}$$

The corresponding translation-invariant interaction is uniquely defined as:

$$\Psi_t(X) = \sum\nolimits_{Y \subset X} (-1)^{|X| - |Y|} H_Y(t)$$

• Ψ_t need not even be in \mathcal{B}_b !

CL for weak Gibbsianity: dressed Hamiltonians

Let $\Phi, \Psi_0 \in \mathcal{B}_b$. Fix $t \in \mathbb{R}$ and define

$$H_{\Lambda}(t) := \alpha_{\Phi,\Lambda}^{-t}(H_{\Lambda}(\Psi_0)) = e^{-itH_{\Lambda}(\Phi)}H_{\Lambda}(\Psi_0)e^{itH_{\Lambda}(\Phi)}$$

The corresponding translation-invariant interaction is uniquely defined as:

$$\Psi_t(X) = \sum_{Y \subset X} (-1)^{|X| - |Y|} H_Y(t)$$

- Ψ_t need not even be in $\mathcal{B}_b!$
- Pressure and specific energy of Ψ_t exist, $P_{\Psi_t} = P_{\Psi_0}$, and $E_{\Psi_t} = \alpha_{\Phi}^{-t}(E_{\Psi_0})$. Thus $\nu_t(E_{\Psi_t}) = (\nu \circ \alpha_{\Phi}^t)(E_{\Psi_t}) = (\nu \circ \alpha_{\Phi}^t)(\alpha_{\Phi}^{-t}(E_{\Psi_0})) = \nu(E_{\Psi_0})$
- If Φ, Ψ₀ generate dynamics, $\{H_{\Lambda}\}_{\Lambda}$ generates dynamics $\alpha^s = \alpha_{\Phi}^{-t} \circ \alpha_{\Psi_0}^s \circ \alpha_{\Phi}^t$

CL for weak Gibbsianity: dressed Hamiltonians

Let $\Phi, \Psi_0 \in \mathcal{B}_b$. Fix $t \in \mathbb{R}$ and define

$$H_{\Lambda}(t) := \alpha_{\Phi,\Lambda}^{-t}(H_{\Lambda}(\Psi_0)) = e^{-itH_{\Lambda}(\Phi)}H_{\Lambda}(\Psi_0)e^{itH_{\Lambda}(\Phi)}$$

The corresponding translation-invariant interaction is uniquely defined as:

$$\Psi_t(X) = \sum\nolimits_{Y \subset X} (-1)^{|X| - |Y|} H_Y(t)$$

- Ψ_t need not even be in $\mathcal{B}_b!$
- Thus $\nu_t(E_{\Psi_t}) = (\nu \circ \alpha_{\Phi}^t)(E_{\Psi_t}) = (\nu \circ \alpha_{\Phi}^t)(\alpha_{\Phi}^{-t}(E_{\Psi_0})) = \nu(E_{\Psi_0})$

• Pressure and specific energy of Ψ_t exist, $P_{\Psi_t} = P_{\Psi_0}$, and $E_{\Psi_t} = \alpha_{\Phi}^{-t}(E_{\Psi_0})$.

• If Φ, Ψ_0 generate dynamics, $\{H_{\Lambda}\}_{\Lambda}$ generates dynamics $\alpha^s = \alpha_{\Phi}^{-t} \circ \alpha_{\Psi_0}^s \circ \alpha_{\Phi}^t$

CL for weak Gibbsianity: Assume that $\Phi \in \mathcal{B}_f$ and either

- (a) $d \ge 1$ and $\Psi_0 \in \mathcal{B}^{3r}$ for some r > 0 and such that $\|\Psi_0\|_r < r$, or
- (b) d=1 and $\Psi_0\in \mathcal{B}_{\mathrm{f}}.$

Then $\omega \in \mathcal{S}_{wg}(\Psi_0) \Longrightarrow \omega_t := \omega \circ \alpha_{\Phi}^t \in \mathcal{S}_{wg}(\Psi_t)$ for |t| small enough. In dim d=1 for all $t \in \mathbb{R}$.

CL for weak Gibbsianity: proof overview

Characterization of weak Gibbsianity [Jakšić–Pillet–Tauber'24]:

$$\omega_t \in \mathcal{S}_{\text{wg}}(\Psi_t) \text{ iff } \\ \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \log \inf_{\substack{A \in \mathcal{U}_{\Lambda} \\ A > 0}} \frac{\omega_t(A)}{(\omega_t)_{-W_{\Lambda}(t)}(A)} = \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \log \sup_{\substack{A \in \mathcal{U}_{\Lambda} \\ A > 0}} \frac{\omega_t(A)}{(\omega_t)_{-W_{\Lambda}(t)}(A)} = 0$$

$$(\omega_t)_{-W_{\Lambda}(t)}$$
 is the local perturbation of ω_t by the surface energies:

$$W_{\Lambda}(t) = \lim_{\Lambda' \uparrow \mathbb{Z}^d} W_{\Lambda,\Lambda'}(t), \;\; ext{where} \; W_{\Lambda,\Lambda'}(t) = H_{\Lambda'}(t) - H_{\Lambda}(t) - H_{\Lambda' \setminus \Lambda}(t)$$

CL for surface energies [Jakšić–Pillet–S–Tauber'25]
$$\forall_{t\in\mathbb{R}} \ \ W_{\Lambda}(t) \text{ exists} \quad \text{and} \quad \lim_{\Lambda\uparrow\mathbb{Z}^d} \frac{1}{|\Lambda|} \|W_{\Lambda}(t)\| = 0$$

$$orall_{t\in\mathbb{R}}$$
 $W_{\Lambda}(t)$ exists and $\lim_{\Lambda\uparrow\mathbb{Z}^d} rac{1}{|\Lambda|} \|W_{\Lambda}(t)\| = 0$

CL for weak Gibbsianity: proof overview

Characterization of weak Gibbsianity [Jakšić-Pillet-Tauber'24]:

$$\omega_t \in \mathcal{S}_{\mathrm{wg}}(\Psi_t) \text{ iff } \\ \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \log \inf_{\substack{A \in \mathcal{U}_{\Lambda} \\ A > 0}} \frac{\omega_t(A)}{(\omega_t)_{-W_{\Lambda}(t)}(A)} = \lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \log \sup_{\substack{A \in \mathcal{U}_{\Lambda} \\ A > 0}} \frac{\omega_t(A)}{(\omega_t)_{-W_{\Lambda}(t)}(A)} = 0$$

$$(\omega_t)_{-W_{\mathbb{A}}(t)}$$
 is the local perturbation of ω_t by the surface energies:

$$W_{\Lambda}(t) = \lim_{\Lambda' \uparrow \mathbb{Z}^d} W_{\Lambda,\Lambda'}(t), \;\; ext{where} \; W_{\Lambda,\Lambda'}(t) = H_{\Lambda'}(t) - H_{\Lambda}(t) - H_{\Lambda' \setminus \Lambda}(t)$$

$$orall_{t\in\mathbb{R}}~W_{\Lambda}(t)$$
 exists and $\lim_{\Lambda\uparrow\mathbb{Z}^d}rac{1}{|\Lambda|}\|W_{\Lambda}(t)\|=0$

Key bound [Lenci–Rey-Bellet'05] For any $A \in \mathcal{U}_{\Lambda}$ such that A > 0

$$e^{-\|W_{\Lambda}(t)\|-\|lpha_{-W_{\Lambda}(t)}^{i/2}(W_{\Lambda}(t))\|} \leq \frac{\omega_{t}(A)}{(\omega_{t})_{-W_{\Lambda}(t)}(A)} \leq e^{\|W_{\Lambda}(t)\|+\|lpha^{i/2}(W_{\Lambda}(t))\|}$$

We need bounds for $\|\alpha^{i/2}(W_{\Lambda}(t))\|$ and $\|\alpha^{i/2}_{-W_{\Lambda}(t)}(W_{\Lambda}(t))\|$.

Ruelle's bound ('69) Assume $\Psi \in \mathcal{B}^r$. The map

$$\mathbb{R}\ni s\mapsto lpha_{\Psi}^s(A)\in\mathcal{U}$$

has an analytic extension to the strip $|\operatorname{Im} z| < rac{r}{2\|\Psi\|_r}$. For any z in this strip

$$\|\alpha_{\Psi}^{z}(A)\| \leq \|A\| e^{r|\operatorname{supp} A|} C_{z,\Psi} \quad \text{with} \quad C_{z,\Psi} = (1 - \frac{2}{z} \|\Psi\|_{r} |\operatorname{Im} z|)^{-1}.$$

Since $\|\alpha^s(W_{\Lambda}(t))\| = \|\alpha^s_{\Psi_0} \circ \alpha^t_{\Phi}(W_{\Lambda}(t))\|$ we simply use Ruelle's bound twice.

We need bounds for $\|\alpha^{i/2}(W_{\Lambda}(t))\|$ and $\|\alpha^{i/2}_{-W_{\Lambda}(t)}(W_{\Lambda}(t))\|$.

Ruelle's bound ('69) Assume $\Psi \in \mathcal{B}^r$. The map

$$\mathbb{R}\ni s\mapsto \alpha^s_{\mathsf{W}}(A)\in\mathcal{U}$$

has an analytic extension to the strip $|\operatorname{Im} z| < \frac{r}{2\|\Psi\|_r}$. For any z in this strip

$$\|\alpha_{\Psi}^{z}(A)\| \le \|A\|e^{r|\sup A|}C_{z,\Psi}$$
 with $C_{z,\Psi} = (1 - \frac{2}{r}\|\Psi\|_{r}|\lim z|)^{-1}$.

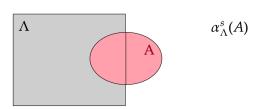
Since $\|\alpha^s(W_{\Lambda}(t))\| = \|\alpha^s_{\Psi_0} \circ \alpha^t_{\Phi}(W_{\Lambda}(t))\|$ we simply use Ruelle's bound twice.

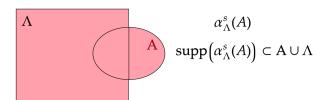
The perturbed dynamics is more problematic. Since

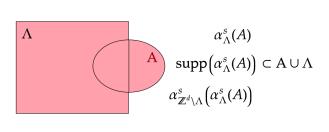
$$\alpha_{-W_{\Lambda}(t)}^{s} = \alpha_{\mathbb{Z}^{d} \setminus \Lambda}^{s} \circ \alpha_{\Lambda}^{s}$$

we need an analogous bound for restricted dynamics

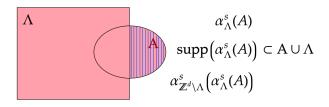
$$\alpha_K^s = \alpha_{\Phi|_K}^{-t} \circ \alpha_{\Psi_0|_K}^s \circ \alpha_{\Phi|_K}^t, \quad K \subset \mathbb{Z}^d.$$







$$\|\alpha_{\mathbb{Z}^d\setminus\Lambda}^s(\alpha_{\Lambda}^s(A))\| \le \|A\| e^{|A\cup\Lambda|}$$



$$\|\alpha_{\mathbb{Z}^d\setminus\Lambda}^s(\alpha_{\Lambda}^s(A))\| \le \|A\| e^{|A\cup\Lambda|}$$

What we should see on RHS:

$$e^{|(A \cup \Lambda) \cap \left(\mathbb{Z}^d \setminus \Lambda\right)|} = e^{|A \cap \left(\mathbb{Z}^d \setminus \Lambda\right)|} \le e^{|A|}$$

Let $K \subset \mathbb{Z}^d$ and $A \in \mathcal{U}_{loc}$. Recall that $\alpha_K^s = \alpha_{\Phi|_K}^{-t} \circ \alpha_{\Psi_0|_K}^s \circ \alpha_{\Phi|_K}^t$.

Ruelle's bound generalized. Assume $\Psi \in \mathcal{B}^r$. The map

$$\mathbb{R}
i s\mapsto lpha^{s}_{\Psiert_{m{
u}}}(m{\mathcal{A}})\in m{\mathcal{U}}$$

$$\mathbb{R}\ni s\mapsto lpha_{\Psi|_{\mathcal{K}}}(A)\in \mathcal{U}$$

has an analytic extension to the strip $|\operatorname{Im} z| < \frac{r}{2\|\Psi\|_r}$. For any z in this strip

$$\|lpha_{\Psi\|_F}^z(A)\| \leq \|A\|\mathrm{e}^{r|\mathrm{supp}A\cap K|}C_{z,\Psi} \quad ext{with} \quad C_{z,\Psi} = (1-rac{2}{r}\|\Psi\|_r|\mathrm{Im}\,z|)^{-1}.$$

Let $K \subset \mathbb{Z}^d$ and $A \in \mathcal{U}_{loc}$. Recall that $\alpha_K^s = \alpha_{\Phi|_K}^{-t} \circ \alpha_{\Psi_0|_K}^s \circ \alpha_{\Phi|_K}^t$.

Ruelle's bound generalized. Assume $\Psi \in \mathcal{B}^r$. The map

$$\mathbb{R}\ni s\mapsto \alpha_{\Psi|_{\mathcal{K}}}^s(A)\in\mathcal{U}$$

has an analytic extension to the strip $|\operatorname{Im} z| < \frac{r}{2\|\Psi\|_r}$. For any z in this strip

$$\|\alpha_{\Psi|_K}^z(A)\| \leq \|A\| \mathrm{e}^{r|\mathrm{supp} A \cap K|} C_{z,\Psi} \quad \text{with} \quad C_{z,\Psi} = (1 - \tfrac{2}{r} \|\Psi\|_r |\operatorname{Im} z|)^{-1}.$$

Bound for composite dynamics. Assume $\Psi_0 \in \mathcal{B}^{3r}$ such that $\|\Psi_0\|_r < r$ and $\Phi \in \mathcal{B}_f$. Set $R = \operatorname{range} \Phi$ and $T_0 = \left(\frac{2}{r}\|\Phi\|_r C_{z,\Psi_0} e^{rR^d}\right)^{-1}$.

For all $|t| < T_0$ the map $\mathbb{R}
ightarrow s \mapsto lpha_{\mathcal{K}}^{s}(A)$

has an analytic extension to the strip $|\operatorname{Im} z| < \frac{r}{2\|\Psi_0\|_r}$. For any z in this strip

$$\|\alpha_K^z(A)\| \leq \|A\| \mathrm{e}^{2r|\mathrm{supp}A \cap K|} \frac{C_{z,\Psi_0}}{1-|t|/T_0}.$$

CL for weak Gibbsianity: Araki's bound in dim = 1

Let $\Psi \in \mathcal{B}_f$ and $F_n(x) := \exp((n-R+1)x + 2\sum_{r=1}^R \frac{\exp(rx)-1}{r})$ with $R := \operatorname{range} \Psi$

Araki's bound ('69): For every $A \in \mathcal{U}_{loc}$, the map

$$\mathbb{R}\ni s\mapsto \alpha_{\Psi}^{s}(A)$$

has an analytic extension to the whole complex plane, and for any $z \in \mathbb{C}$ $\|\alpha_{\mathsf{W}}^{\mathsf{z}}(A)\| < F_n(C_{\mathsf{W}}|\mathsf{z}|)\|A\|$

where
$$n=\max\{\operatorname{diam}(\operatorname{supp} A),R-1\}$$
 and $C_{\Psi}=2(R+1)\|\Psi\|_{\operatorname{s}}$

CL for weak Gibbsianity: Araki's bound in dim = 1

Let $\Psi \in \mathcal{B}_{\mathrm{f}}$ and $F_n(x) := \exp \left((n-R+1)x + 2\sum_{r=1}^R \frac{\exp(rx)-1}{r}\right)$ with $R := \mathsf{range}\,\Psi$

Araki's bound ('69): For every $A \in \mathcal{U}_{\mathrm{loc}}$, the map

$$\mathbb{R}\ni s\mapsto \alpha^s_{\Psi}(A)$$

has an analytic extension to the whole complex plane, and for any $z\in\mathbb{C}$

$$\|\alpha_{\Psi}^{z}(A)\| \leq F_{n}(C_{\Psi}|z|)\|A\|,$$

where $n = \max\{\operatorname{diam}(\operatorname{supp} A), R - 1\}$ and $C_{\Psi} = 2(R + 1)\|\Psi\|_{\mathrm{s}}$

Araki's bound generalized: Additionally, let $K \subset \mathbb{Z}$. For every $A \in \mathcal{U}_{loc}$,

$$\mathbb{R}\ni s\mapsto \alpha^s_{\Psi|_{\kappa}}(A)$$

has an analytic extension to the whole complex plane, and for any $z\in\mathbb{C}$

$$\|\alpha_{\Psi|_K}^z(A)\| \leq F_n(C_{\Psi}|z|)\|A\|,$$

where $n = \max\{\operatorname{diam}(\operatorname{supp} A \cap K), R - 1\}$ and $C_{\Psi} = 2(R + 1)\|\Psi\|_{s}$

CL for weak Gibbsianity: proof recap

Recall for any $A \in \mathcal{U}_{\Lambda}$ such that A > 0 we have

$$\mathrm{e}^{-\|W_{\Lambda}(t)\|-\|\alpha_{-W_{\Lambda}(t)}^{\mathrm{i}/2}(W_{\Lambda}(t))\|} \leq \frac{\omega_{t}(A)}{(\omega_{t})_{-W_{\Lambda}(t)}(A)} \leq \mathrm{e}^{\|W_{\Lambda}(t)\|+\|\alpha^{\mathrm{i}/2}(W_{\Lambda}(t))\|} \tag{1}$$

- Using the Lieb-Robinson bound: $\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}\|W_{\Lambda}(t)\|=0,$
- Using Ruelle/Araki generalized bounds:

$$\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}\|\alpha^{\mathrm{i}/2}(W_{\Lambda}(t))\|=0\quad\text{ and }\quad \lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}\|\alpha^{\mathrm{i}/2}_{-W_{\Lambda}(t)}(W_{\Lambda}(t))\|=0.$$

- $\frac{1}{|\Lambda|}\log()$ of each bound in (1) goes to zero as $\Lambda \uparrow \mathbb{Z}^d$
- ullet So $\omega_t \in \mathcal{S}_{\mathrm{wg}}(\Psi_t)$, i.e., CL for weak Gibbsianity holds

CL for weak Gibbsianity/regularity & relative entropy

 \Longrightarrow CL for relative entropy

CL for weak Gibbsianity: Assume that $\Phi \in \mathcal{B}_f$ and either

(a)
$$d \geq 1$$
 and $\Psi_0 \in \mathcal{B}^{3r}$ for some $r > 0$ and such that $\|\Psi_0\|_r < r$, or

(b)
$$d=1$$
 and $\Psi_0\in \mathcal{B}_{\mathrm{f}}.$

Then $\omega \in \mathcal{S}_{w\sigma}(\Psi_0) \Longrightarrow \omega_t \in \mathcal{S}_{w\sigma}(\Psi_t)$ for $|t| < T_0$.

In dim
$$d=1$$
 one can take $T_0=\infty$.

CL for weak Gibbsianity,
$$P_{\Psi_t} = P_{\Psi_0}$$
 and $u_t(E_{\Psi_t}) =
u(E_{\Psi_0})$

$$\omega \in \mathcal{S}_{\mathrm{wg}}(\Psi_0) \iff (\omega, \Psi_0) \text{ regular } \iff \omega \in \mathcal{S}_{\mathrm{eq}}(\Psi_0)$$

Summary of new CLs. Let $\nu \in \mathcal{S}_l$ and $t \in \mathbb{R}$

CL for specific entropy and energy. Let $\Phi \in \mathcal{B}_{\gamma}^{\text{diam}}$ with $\gamma > 2d$. Then

In dim d=1 we can take $T_0=\infty$.

CL for specific relative entropy. Assume that
$$\Phi \in \mathcal{B}_f$$
 and either

(a)
$$d \geq 1$$
 and $\Psi_0 \in \mathcal{B}^{3r}$ such that $\|\Psi_0\|_r < r$, or

If (ω, Ψ_0) is regular, then $s(\nu_t | \omega_t)$ exists and $s(\nu_t | \omega_t) = s(\nu | \omega)$ if $|t| < T_0$.

(b)
$$d=1$$
 and $\Psi_0\in\mathcal{B}_{\mathrm{f}}$.

Summary of new CLs. Let $\nu \in \mathcal{S}_I$ and $t \in \mathbb{R}$

CL for specific entropy and energy. Let $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma > 2d$. Then

CL for specific relative entropy. Assume that $\Phi \in \mathcal{B}_f$ and either

(a)
$$d \geq 1$$
 and $\Psi_0 \in \mathcal{B}^{3r}$ such that $\|\Psi_0\|_r < r$, or

(b)
$$d=1$$
 and $\Psi_0\in \mathcal{B}_{\mathrm{f}}.$

If
$$(\omega, \Psi_0)$$
 is regular, then $s(\nu_t | \omega_t)$ exists and $s(\nu_t | \omega_t) = s(\nu | \omega)$ if $|t| < T_0$.
In dim $d = 1$ we can take $T_0 = \infty$.

CL for weak Gibbsianity/regularity. Under the same assumptions:

there exists Ψ_t such that $\omega_t \in \mathcal{S}_{\mathrm{wg}}(\Psi_t)$, i.e., (ω_t, Ψ_t) is regular

CL for surface energies Let $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma > 2d$ and $\Psi_0 \in \mathcal{B}_{\gamma'}^{\mathrm{diam}}$ with $\gamma' \geq 0$.

Then $W_{\Lambda}(t)$ exists for every $t \in \mathbb{R}$, and $\lim_{\Lambda \uparrow \mathbb{Z}^d} \frac{1}{|\Lambda|} \|W_{\Lambda}(t)\| = 0$

Thank you!

- O H. Araki: Gibbs states of a one dimensional quantum lattice. Commun. Math. Phys. 14 (1969)
- D. Ruelle: Statistical Mechanics: Rigorous Results (1969)
- M. Lenci, L. Rey-Bellet: Large deviations in quantum lattice systems: one-phase region.
 J. Stat. Phys. 119 (2005)
- B. Nachtergaele, R. Sims, A. Young: Quasi-locality bounds for quantum lattice systems.
 I. Lieb-Robinson bounds, quasi-local maps, and spectral flow automorphisms.
 J. Math. Phys. 60 (2019)
- W. F. Wreszinski: Irreversibility, the time arrow and a dynamical proof of the second law of thermodynamics. Quantum Stud.: Math. Found. 7 (2020)
- W. F. Wreszinski: The second law of thermodynamics as a deterministic theorem for quantum spin systems. Rev. Math. Phys. 35 (2023)
- V. Jakšić, C.-A. Pillet, C. Tauber: Approach to equilibrium in translation-invariant quantum systems: Some structural results. Annales Henri Poincaré 25 (2024)

Bonus: Hiai-Petz type bound

vanishing of surface energies
$$\implies$$
 if exists, specific relative entropy $\lim_{\Lambda\uparrow\mathbb{Z}^d}\frac{1}{|\Lambda|}\|W_{\Lambda}(t)\|=0$ does not increase along the trajectory

Thm. Assume $\Phi \in \mathcal{B}_{\gamma}^{\mathrm{diam}}$ with $\gamma > 2d$ and $\Psi_0 \in \mathcal{B}^r$ with any r > 0. Let $\omega \in \mathcal{S}_{\mathrm{eq}}(\Psi_0)$ and $\nu \in \mathcal{S}_l$. Then

$$\limsup_{\Lambda\uparrow\mathbb{Z}^d} \tfrac{1}{|\Lambda|} S((\nu_t)_\Lambda|(\omega_t)_\Lambda) \leq -s(\nu) + \nu(E_{\Psi_0}) + P_{\Psi_0}.$$

In particular, if (Ψ_0,ω) is regular, then

$$\limsup_{\Lambda\uparrow\mathbb{Z}^d} \tfrac{1}{|\Lambda|} S((\nu_t)_{\Lambda}|(\omega_t)_{\Lambda}) \leq s(\nu|\omega),$$

and if $s(\nu_t|\omega_t)$ exists, then

$$s(
u_t | \omega_t) \leq s(
u | \omega).$$