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General setup

For a phase space S and vector field X : S — S, we consider the initial value
problem

u(t) = X (u(t)), u0)=uy €S.
One can study the initial value problem in two ways.

(1) Deterministically. Well-posedness in a suitable function space (existence,
uniqueness, stability,...)

(2) Probabilistically. Study the dynamics of ensembles of initial data rather
than a single point in phase space.

One obtains the Liouville equation for 1, € 27(S) — a probability measure
onsS d

dt | SF(U) pi(du) = /S<VF(u)X(u)> fi(du) .

Fe%(S)

®,— the flow map of the IVP

pe = (®); € P(S) ; recall (@,);u(A) = u(@7'(A))
(+,+) —inner product on S.
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General setup

A solution p; € 22(S) to the Liouville equation is called stationary if for all

%' SF(u) pe(du) = _/S<VF(U)7X(U)>M((1U) —0.

Assume S has a Poisson bracket : amap {-,-} : €(S) x €(S) — €(S)
satisfying

@ Antisymmetry : {F,G} = —{G, F'}.

@ Distributivity : {F +G,H} ={F,H}+ {G,H}.

@ Leibnizrule: {FG,H} ={F,H}G+ F{G,H}.

@ Jacobiidentity : {F,{G,H}} +{G,{H,F}}+ {H,{F,G}} =0.
Take F' = 1 in the Leibniz rule and deduce that

(G, HY = {1,H}G + {G, H}.

Hence {1, H} = {H,1} = 0.
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@ Let § > 0 be given.
We say that 1 € Z(S) is a (classical) (8, X) — Kubo—Martin—-Schwinger
(KMS) state if for all test functions F, G we have

[ ARGy ) =5 [ (VP (), X() Gla) n(du)
S S

@ Taking G = 1, we get that 11, = 1 is a stationary solution to the Liouville
equation since

(9P, X (@) () = 0

for all test functions F'.

@ This concept was first introduced in the infinite-dimensional setting by
Gallavotti and Verboven (1975) (in statistical mechanics).
Further work by Aizenman-Goldstein-Gruber-Lebowitz-Martin (1977),
Arsen’ev (1983), Chueshov (1986).

V. Sohinger (Warwick) Local KMS states for focusing NLS Quantissima sur Oise, 2025 4/33



The nonlinear Schrodinger equation

Consider the spatial domain A = T ford = 1,2, 3.
@ Study the nonlinear Schrédinger equation (NLS).

i0pur(z) = (= A+ Due(z) + (S V(@ —y) [u(y)]* dy) wi ()
U()(.E) = \I/( )E H? (A)

@ Interaction: V € L'(A) positive or V = 4.
@ Conserved energy (Hamiltonian)

hw) = 5 [ a1 - Ayute)do+ 5 [ [ 1@ V- ) )P dsdy.

@ Infinite-dimensional Hamiltonian system, S = H*(A)

d po
&F(ut) = {F, h}(ut), Fe® (8)

and

{u,v} = Im / w(z)o(@) dz .
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Gibbs measures for the NLS

@ The Gibbs measure ;. associated with 7, is the probability measure on
the space of fields v : A — C

pldu) = 2o,z et
Z .

du = (formally-defined) Lebesgue measure.
@ Formally, p is invariant under the flow of the NLS:

(®o)gp = 1,

where ¢, := flow map of NLS.
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Gibbs measures for the NLS: known results

@ Rigorous construction of Gibbs measure: CQFT literature in the
1970-s (Nelson, Glimm-Jaffe, Simon), also Lebowitz-Rose-Speer (1988).

@ Proof of invariance: Bourgain (1990s).

@ Application to nonlinear dispersive PDE: Obtain low-regularity
solutions p-almost surely.
Bourgain-Bulut, Burg-Tzvetkov, Bringmann, Burg-Thomann-Tzvetkov,
Cacciafesta- de Suzzoni, Deng-Nahmod-Yue, Dinh-Rougerie,
Dinh-Rougerie-Tolomeo-Wang, Fan-Ou-Staffilani-Wang,
Genovese-Luca-Valeri, Genovese-Luca-Tzvetkov,
Krieger-Lihrmann-Staffilani, Lihrmann-Mendelson,
Nahmod-Oh-Rey-Bellet-Staffilani,
Nahmod-Rey-Bellet-Sheffield-Staffilani, Oh-Pocovnicu,
Oh-Sosoe-Tolomeo, ...

@ Mean-field limits of quantum many-body Gibbs states
Lewin-Nam-Rougerie, Fréhlich-Knowles-Schlein-S.,
Ammari-Ratsimanetrimanana, Ammari-Farhat-Petrat, Rout-S.,
Dinh-Rougerie, Nam-Zhu-Zhu.
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Gibbs measures for the NLS

@ Let ho(u) := % [da (|Vu(z)|? + |u(z)[?). Define the Wiener measure .

1
po(du) i= — e hoW dqy 2= /e*h““) du.
20

Typical elements of supp 1y can be written as

w 79 o .. i
2. (|ngn+(1))1/2 *™ T (g,) = ii.d. complex Gaussians.
nezd

Series converges almost surely in H'~%—=(A).
@ d=1andV € L>,V > 0 pointwise, almost surely

Rl = i/ /|U(L)|2 V(z —y) |u(y)|*dzdy € [0,00).

@ d=23andV e L™,V > 0 pointwise; renormalize by Wick ordering .
. 1 f
prvies e 2 [ (@) = 00) Vi =) (luw)? - o0) dady € 0,50).

Here co = E,,, (Ju(+)|?). Obtain p < py.

V. Sohinger (Warwick) Local KMS states for focusing NLS Quantissima sur Oise, 2025 8/33



(Informal) Statement of result for defocusing problems

@ General question: Can we compare Gibbs measures and classical KMS
states?
Answer/Theorem: They coincide (under appropriate assumptions)!
@ Structure of proof:
o Establish the Gibbs-KMS equivalence in general nonlinear
infinite-dimensional systems (under appropriate assumptions).
o Verify the assumptions for the relevant examples from defocusing nonlinear
dispersive PDEs.
@ In order to interpret our result in the PDE context, we reintroduce the
(inverse temperature) .

1 .
pg(du) = P e MW qy zp 1= / e AW gy,

) :
ppo(du) = ——e Py, z54:= / e Pho() dy |
’ 26,0 B
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Outline of the rest of the talk
@ Obtain Gibbs-KMS equivalence in finite-dimensional dynamical systems.
@ Generalize to infinite-dimensional linear dynamical systems.

@ Obtain Gibbs-KMS equivalence in nonlinear infinite-dimensional
dynamical systems.
Study defocusing nonlinear dispersive PDEs.
— Use Malliavin derivatives and Gross-Sobolev spaces.

@ Study the focusing nonlinear Schrédinger/Hartree equation on T¢ with
d=1,2,3.
— Prove a local Gibbs-KMS equivalence.

@ 1-3: Based on Ammari-S. (Revista Matematica Iberoamericana 2023).
@ 4: Based on Ammari-Rout-S. (Preprint 2024).
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Finite-dimensional systems

The linear algebra setup.

@ FE — Hermitian space with inner product (-, -) such that dimc¢(E) = n.
{e1,...,e,} —orthonormal basis of E.

@ View FE as a real vector space Ex with inner product (-, -)g := Re(, -).
Letfj ::iej,j: 1,....n

{e1,...,en, f1,..., fn} —oOrthonormal basis of Fx.
@ For |G € ¢ (E),
0F
VE(u):=
" [ OF oG oG oF
{F,G}(u) := <(u) —(u) — —(u) ,(u)) )
; 86]- 8f] 86]- 8f]

@ Hamiltonian i € ¥'*(E). Define X := —iVh.
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Finite-dimensional systems

@ Hamiltonian system:
he ¢ (E), X=-iVh:E— E.

a(t) = X(u(t)) .

— Assume that it has a global flow.

@ Gibbs measure:
dL — Lebesgue measure on FE, 5 > 0.
Assume that

z3 1= / e MU AL < 0.
E

Define e
e P dL L gn(y
= = —¢ P"VUdL.
KB fE ef,@h(u) dL 2 €
— Invariant under the flow.
@ KMS condition:
we Z(E)isa (p,X)-KMS state if for all F,G € €>°(E) we have

(PG du=5 [ Re(VF(@), X(w) 6a)d
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Finite-dimensional systems

Re(VF(u), X (u)) = {F,h}(u) = (8, X)- KMS condition is equivalent to

[ (FGYw =5 [ (Fr}w )
JE JE

Theorem 1: Ammari-S. (2023).

Let € Z(E). Then pis a (38, X)-KMS state if and only if i = .

@ .3 Stationary solution of the Liouville equation, i.e.

/ER,e (VF(u), X (u))dpg(u) =0

forall FF € € (FE).
@ KMS states are stationary solutions to the Liouville equation.
@ By Theorem 1, the two notions (Gibbs and KMS) coincide.
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Finite-dimensional systems

Theorem 1: Ammari-S. Rev. Matematica lberoam. (2023).
Let p € Z(E). Then pis a (5, X )-KMS state if and only if 1 = 5.

<: Let u = pug. We integrate by parts to write

oF oG 1 / 0 (8F _
u)dug = —— Gu) — | —(u)e ﬁh(u)> dL
Eaej()afj() I - ()afj aej()
' 9°F o OF Oh
- _ | d+i/(£ ) — —— dug.
[ 60 5w+ [ G S5 T

Similarly

" O0G oF ' O*F . OF 0Oh

[ e 5 )y = /Ecwwwww» [ 6w 5 o dus.
Hence

/{F,G}(u) dug =8 / {F.hj(u) Glu)dus = pgis a (8, X)-KMS state.
E JE
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Finite-dimensional systems

=:lLetue Z(F)bea (s, X)-KMS state.

We adapt an argument from Aizenman-Goldstein-Gruber-Lebowitz-Martin
(1977) to show that 11 = pg.

@ By the Leibniz rule for {-,-}, forall I, G € €>°(F)
{F,Ge PhWY — (1 G} e W) _ 1P b} G(u) e PP
@ Since p is a (8, X)-KMS state, we get

/ {F,G e Phuw Bhlw) qp = 0,
JE

@ Define v := (") ;. Thenforall F € €>(F),G € ¢! (FE), we have
V({F,G}) = / (F,G}(u)dv = 0.
JE

— v =cL. Since p € #(E), we deduce i = p15. O
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Infinite-dimensional linear systems

H- a separable complex Hilbert space.

@ Hamiltonian system:
Consider a linear operator A densely defined on H.

@ de>0st. A>cl.

e Jo.n.b. of H consisting of eigenvectors (e;) with eigenvalues \;.

e Js > 0suchthat >, A% =tr(A77°) < oo.

The Hamiltonian is ho : D(AY2?) - R, ho(u) = (u, Au).
(u, v) e := (A7/?u, A7/?v). H"-associated Hilbert space.
We have the embedding H* C H C H*.
Example: For d < 3, consider H = L*(T?), A=-A+1, =
ho(u) =1 [ a(z)(1 — A)u(z) dz.

@ Think of H as a real Hilbert space with

{ L2, . I{("/’,’

ando.n.b. {¢;, f;,7 € N}, f; =ie;.
@ Notation: Fix s > :’ — 1 henceforth.

d

2

— 1.
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Cylindrical smooth functions

@ Define 7, : H—* — R?" by

T (u) = ((u, €1)r2Rs-- -, (Usen)r2r; (U, f1) L2 R, - -, (1, f,,,)Lz’R) .

@ Wesay ' € ) if 3n € N Jp € €>°(R*") such that F' = pom,

Ccyl(

Fu) = o((u,e1)r2ms- - (U en) 2 gs (U f) 2 e oy (U fu)r2g) -
— Cylindrical smooth functions.
@ ForFF=pom, e‘ﬁwl( -9)

V() i= Y [0ye(ma(w) e; + D sp(malw)) 1]

@ ForF=ypom,, G=vom, € €2 (H *), we define

c,cyl
{F,G}(u) =
min(n,m)

> (0300 (1)) D9 (o (1)) = O30 (1)) O g2 ()]
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Infinite-dimensional linear systems

@ Gibbs measure: s
Formally 150 = =550 -

@ Rigorously, consider 13,0 to be the unique centered Gaussian measure
on H—* with covariance 3~! A='~* i.e.forall f,g € H~*

1 —1—S
B <f-,14 ! ‘9>H*S,]R = / 7'<f-, U>H*S,R <u-,g>H*S,R dpg.o -
@ Define the orthogonal projection P, : H~° — E,, = spanc{e1,...,e,} .
Fact:

€_§<"A') dLgn
fE e*%(‘.A-) dLQn 7

(Pn)itip,0 =

where d L., = Lebesgue measure on F£,,.
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Infinite-dimensional linear systems

We consider X, = —iA.
we P(H)isa(f,Xo)-KMS state if for all /.G € € ,(H~*) we have

c,cyl

/ {F,G}(u)dp = ﬂ/ Re(VF(u), Xo(u)) 2 G(u) dpu .
H—+ -

Theorem 2: Ammari-S. Rev. Matemética lberoam.(2023).
we P(H*®)isa (B, Xo)-KMS state if and only if = ps0.

Sketch of proof of =: Let 11, := (P,)yn € Z(E,).
One shows that for /' = p o7, G =+ om, € 67,(H°)
/ {F,G}(u)df, =8 / Re (VF(u), Xo(u))g, G(u)di, .
J E, J E,
Hence /i, is a KMS state. Theorem 1 implies that for all n
67§<I7A'> dL?n

fin = (Pn)gp = 5 = (Pn)ghp.0 -
: fEn, eig«’A.) dLZn Y

The claim follows by taking n — co. O
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Infinite-dimensional nonlinear systems

@ The Malliavin derivative:
Recall that for F = pom, € €2 (H*°),

c,cyl

n

VE(w) = [0560(mn(w)) €5 + Onyjip(ma(w)) f] -

j=1
Fact: For p € [1, c0), the operator

V6 (H™®) € LP(upo) — LP(pg0s H™®)

c,cyl
is closable.
— The Malliavin derivative.

@ Gross-Sobolev spaces:
DY (1p,0)- closure domain of V.

HFHW*T’(M,O) ~||F LP(ugo) T IVF| L (pg,0:H %)

— a Banach space; a Hilbert space for p = 2.
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Infinite-dimensional nonlinear systems: Results

Consider h! : H* — R, Borel measurable such that
e P ¢ L'(pso) Rt € DY (ugp ) -
Define
X = —iA —iVAh!.

We say that € &7(H ") is a (8, X)-KMS state if for all 1, G € €2¢, ,(H ") we
have

/ {F,G}u)dp =p Re(VF(u), X(u))r2 G(u)dp.
H—s JH-=

Theorem 3: Ammari-S. (Rev. Matematica lberoam. 2023).

The following hold (under additional technical assumptions).
(i) The Gibbs measure

ol
e P g o

10 T e P duag

is a (8, X)-KMS state.
(i) Let p € Z(H°) be a (5, X)-KMS state. Then p = pug.
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Infinite-dimensional nonlinear systems: Comments

@ Technical assumptions needed:
o For (i), assume that ¢ := d:)—fo e DV2(pg.0).
o Obtain that o solves
Vo+ ﬁthI =0.

e Use PDE to get

I oy T 1 1
{ R 3} . —BF
V(eah 0)=0= " p=C =p=——————¢"" .

@ Method of proof Integration by parts:
For F e >, (H™*), G €D"(us0), p € H', we have

7 c,cyl

G(u) (VF(u),0)r2 dpgo =

JH=s

/H F(u )( (VG(u), @)1z + SG(u /1.4;‘;»L1>duﬁ70.
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Applications to defocusing nonlinear dispersive PDEs

Example: Let d = 2, 3.
Consider the Wick-ordered nonlocal NLS (Hartree) equation.

100+ (A —1)u = [v* G [uf? ;)] wonT! x R.

s |ul? := |ul]® — E,, (Ju(-)|*) denotes Wick ordering with respect to 1.
@ Assume

0<SV(k) < ¢z ifd=2

— Analogous to assumptions in Bourgain (JMPA 1997); recent
improvement in 3D by Deng-Nahmod-Yue (JMP 2021).

@ 13 0-almost surely, we have

= //:u V(z—y): |u(y)” :dzdy € [0,00).
d Jrd

= e PO e L2(ugy), ht € D*(ug,0) -
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Focusing NLS/Hartree equation

We study the following focusing problems.
@ Focusing NLSon A = T:

iu+ (A—1)=—|ul"v, r=3,5.

. 1 [ 9 9 1 .
h(u) = = / (IVul® + |u|*) dz — 7/ Ju|" Tt dx .
2 ) 1 T + 1 T1
@ (Wick-ordered) focusing Hartree equation on A = T for d = 2, 3:
i0u+ (A—=1)=[V=*:|ul *]u
with no sign assumptions on V.
1 1 5 5
h(u) = 7/(\Vu\2 + |u)?) dz + 7/ [V u” o] [u” de.
2 A 4 Td
Here

. 1 ‘ 2
p 1 Wick _ 0 /Td(v*; lul? ) s ul? da

is not necessarily > 0.
@ Onein general has z5 = [ " (Wdp, o = oo,
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Local Gibbs measures

@ Let us fix 5 = 1 throughout the sequel.
@ We study local Gibbs measures

1 Y
UGibbs, R i= ;C h Er(M(u))dp o, ZR ::/C h Er(M(u))dpo-
Here, R > 0,Zr = 1(_p ) and
2, ifd=1,
M) = ||UHL2 o , .
ulls = lullfe =By [lullf.]  ifd=2,3.

@ Lebowitz-Rose-Speer, Bourgain, Brydges-Slade, Thomann-Tzvetkov,
Oh-Okamoto-Tolomeo, Oh-Sosoe-Tolomeo,
Dinh-Rougerie-Tolomeo-Wang, Carlen-Fréhlich-Lebowitz,
Weber-Tolomeo, Robert-Seong-Tolomeo-Wang,. ...

— obtain a well-defined probability measure.

@ Whend =1and p =5, one needs to take R > 0 sufficiently small;
otherwise one takes R > 0 arbitrary.

@ Goal: Relate local Gibbs measures to suitable (local) KMS states.
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Local KMS states

Let us consider the (Wick-ordered) focusing Hartree equation on
A=T%d=2,3.
iu+ (A —-1) = [V* :Jul? :] u
— Rewriteas @ = X(u), X(u)=i(A—1)u+iVhWVik@y),

Define
Br:={ue H®, IM(u)| < R}, B%: = H °\Br.

D}%2(/117()) = {G S DLQ(/LL()), IR € (OR) s.t. G(U) =0 H1,0-2.S. ON B(:/} .

we P(H*)is a local KMS state if

(PO} W= [ (VF(), X(w)122 G dp.

H-—s

o0

forall G € Dy (p1,0) and F € €25, (H*).
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Statement of results

Theorem 4: Ammari-Rout-S. (Preprint, 2024).

The following results hold
(i) The local Gibbs measure

I i
UGibbs,R i= ge L ErM(uw))dmo, 2r :z/e e Er(M(u))dpao -

is a local KMS state.
(i) Let u € 2(H ) be a local KMS state. Suppose that

with . Then p is locally a Gibbs measure:
Jeo > 0 such that 14 o almost surely on B one has

o(u) = oy @)
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Statement of results

One also notes that local Gibbs measures are stationary solutions to the
Liouville equation.
(Note: This does not follow from Theorem 4 (i) since we cannot take G = 1.)

Theorem 5: Ammari-Rout-S. (Preprint, 2024).

The following results hold
(i) The local Gibbs measure pcibbs,r Satisfies

/ %(VF, X(u))p2 r dptibbs,g = 0.

forall F € €,,(H?).

c,cyl

Using the results of Ammari-Farhat-S. (AIM 2024), we obtain an alternative
proof of Bourgain’s almost sure global existence result.

The focusing NLS/(Wick-ordered) Hartree equation admits a global solution
for paibbs, R €very initial data in H~°.
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Elements of the proofs

@ The proofs of Theorem 4 (i) and Theorem 5 are more complicated in the
local setting, due to the presence of the cut-off.

@ An important observation is that {h, M} = 0. This allows us to show
Theorem 5 in the finite-dimensional setting and then extend to the
general setting by considering cylindrical functions and using methods of
Malliavin calculus.

@ When showing that local KMS states ;1 = o1, ( are local Gibbs measures,
we obtain the differential equation

V(e " ZEp(M)o) =0

onBr={ue H*, IMu)| < R}
(Er is a smoothed-out characteristic function of [— R, R].).

@ We can deduce that ¢ " = ,,( /M) is constant by using work of Aida
(1998) provided we show that By is ' connected, i.e. for all u € Bg, the
set

{we H': u+w € Bgr}
is connected in H'.

@ This is immediate when d = 1, but it requires an additional construction

when d = 2, 3.
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Finite-dimensional calculation

Work on R?" with 1 € >°(R*") such that

{h,M}=0, M(pq=> 0j+d).

j=1

Vector field

X:R™ SR, X= (((?ihj)j—l . (7 (98;)]-_1,.‘.,71) '

For ¢ € €2°(R), consider the local Gibbs measure

! TP Dy (M) dpdg € P(R?™), 2y := / e M) (M) dpdg.
P

Ay =

Proposition (Ammari-Rout-S.)

For all p € > (R*"), we have

Re(Vp, X)dpy =0.
R2n

V. Sohinger (Warwick) Local KMS states for focusing NLS Quantissima sur Oise, 2025 30/33



Finite-dimensional calculation

Vector field X = ((%) B 7<7 3;7) } )
Local Gibbs measure 7=t

dpry = ZL e MOy (M)dpdg € P(R?™), 2y := [e MPD (M) dpdg.
We compute:

' 1
[ Re(Ve Xpdny == [ Re(Vp X)e " w(M) dpdg
R2n Zw R2n

o Oh  Op Oh\ _,
— — - M)dpdgq.
Z/]RZ'VL(@])J dq;  0q; Op; ™" Y(M)dpdg

Integrate by parts to rewrite as:

1 « 9%h 9%h h oh 0, _,
— — + M)—— — M
Zap E/R2n [( Op;0q; (‘)(//(')/)‘/) e Y(M) dq; Op; (™" (M)

oh 0 ;
I et (M
e )| apdg
=L [ pihe ()} dpdg.
Zyp JR2m

V. Sohinger (Warwick) Local KMS states for focusing NLS Quantissima sur Oise, 2025 31/33



Finite-dimensional calculation

By the Leibniz rule for the Poisson bracket

1 ‘
— @ {h,e (M)} dpdq
Zyp JR2n
1 o
:7/ (@ {h.e "FO(M) 4+ {h, (M)} e ") dpdg
Zp JR2n
1

- (p{h,e "} (M) + o' (M) {h,M}e ") dpdg = 0.
P JR2n

Above, we used
{h,e™"} ={h,M} =0.

We conclude i
/ Re(Vp, X)duy, =0. O
RQn
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Thank you for your attention!
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