

Ubiquity of bound states for the strongly coupled polaron

Robert Seiringer IST Austria

Based on joint works with M. Brooks and D. Mitrouskas

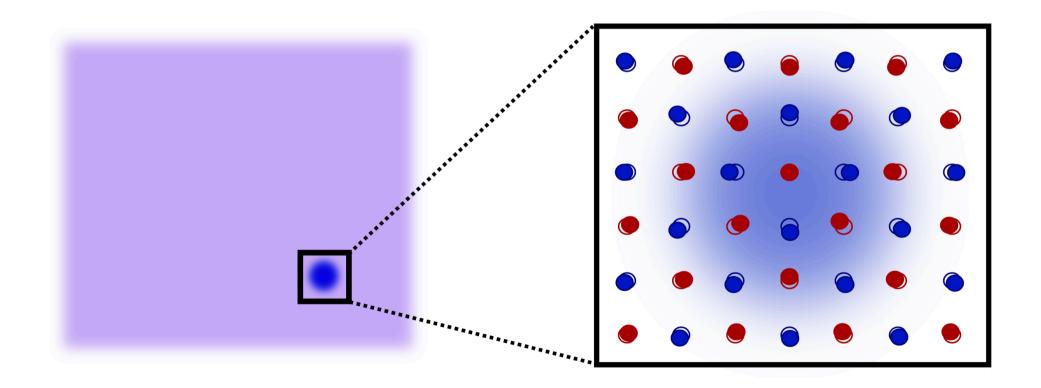
Quantissima sur Oise

CY Institute for Advanced Studies, Sept. 15–19, 2025

THE POLARON

Model of a charged particle (electron) interacting with the (quantized) phonons of a polar crystal.

Polarization proportional to the electric field created by the charged particle.



THE FRÖHLICH MODEL

Model of a charged particle (electron) interacting with the (quantized) phonons of a polar crystal. **Polarization** proportional to the electric field created by the charged particle.

On $L^2(\mathbb{R}^3)\otimes \mathcal{F}$ (with $\mathcal{F}=\bigoplus_{n>0}L^2_{\mathrm{sym}}(\mathbb{R}^{3n})$ the bosonic Fock space over $L^2(\mathbb{R}^3)$),

$$\mathfrak{H}_{\alpha} = -\Delta - \sqrt{\alpha} \Phi(v_x) + \mathbb{N} \quad , \quad v_x(y) = \frac{1}{|x - y|^2}$$

with $\alpha > 0$ the coupling strength and $\Phi(f) = a(f) + a^{\dagger}(f)$. The creation and annihilation operators satisfy the usual **CCR**

$$[a(f), a(g)] = 0$$
 , $[a(f), a^{\dagger}(g)] = \langle f|g\rangle$

This models a large polaron, where the electron is spread over distances much larger than the lattice spacing.

Note: Since $y \mapsto |y|^{-2}$ is not in $L^2(\mathbb{R}^3)$, \mathfrak{H}_{α} is not defined on the domain of \mathfrak{H}_0 . It can be defined as a quadratic form, however.

Energy-Momentum Spectrum and Effective Mass

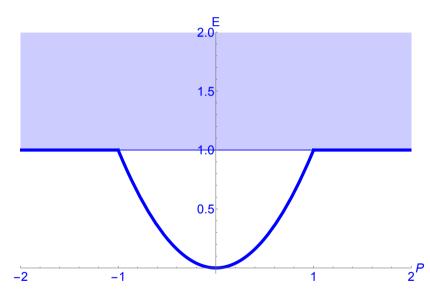
The Fröhlich Hamiltonian \mathfrak{H}_{α} is translation invariant and commutes with the total momentum $P=-i\nabla_x+P_f$, $P_f=d\Gamma(-i\nabla_y)$. Hence there is a fiber-integral decomposition $\mathfrak{H}_{\alpha} = \int_{\mathbb{R}^3}^{\oplus} \mathfrak{H}_{\alpha}^P dP$. In fact,

$$\mathfrak{H}_{\alpha}^{P}\cong \left(P-P_{f}\right)^{2}-\sqrt{\alpha}\,\Phi(v)+\mathbb{N}$$
 (acting on \mathcal{F} only)

Energy-momentum spectrum $(P, \sigma(\mathfrak{H}_{\alpha}^{P}))$, with infimum

$$E_{\alpha}(P) = \inf \operatorname{spec} \mathfrak{H}_{\alpha}^{P}$$

Note: $\sigma_{\rm ess}(\mathfrak{H}^P_{\alpha}) = [E_{\alpha}(0) + 1, \infty)$ for any P. In the absence of interaction ($\alpha = 0$), $E_0(P) =$ $\min\{|P|^2,1\}$, and $\sigma_{\rm ess}(\mathfrak{H}_0^P)=[1,\infty)$.



The effective mass $m_{\rm eff}$ of the polaron is defined by

$$E_{\alpha}(P) = E_{\alpha}(0) + P^2/(2m_{\text{eff}}) + o(P^2)$$
 as $P \to 0$.

EXCITED STATES

Our main result concerns the existence of additional spectrum in the gap $(E_{\alpha}(0), E_{\alpha}(0) + 1)$, i.e., excited states. They exist for large α :

THEOREM [Mitrouskas, S. 2023]: For $|P| \ll \alpha^2$, $\lim_{\alpha \to \infty} |\sigma_{\text{disc}}(\mathfrak{H}^P_{\alpha})| = \infty$



This is in contrast to the case of small α :

THEOREM [S. 2023]: For α small enough, $\sigma_{\rm disc}(\mathfrak{H}_{\alpha}^{0}) = \{E_{\alpha}(0)\}$

EXCITATION ENERGIES

We actually give **upper bounds** on excited eigenvalues, in terms of a Bogoliubov-type Hamiltonian constructed from the classical **Landau**—**Pekar** functional (to be explained below).

THEOREM [Mitrouskas, S. 2023]: The *n*th min-max value $\mu_n(\mathfrak{H}_{\alpha}^P)$ satisfies

$$\mu_n(\mathfrak{H}_{\alpha}^P) \le \alpha^2 e^{\text{Pek}} + \frac{1}{2} \text{Tr} \left(\sqrt{H^{\text{Pek}}} - 1 \right) + \Lambda_n + \frac{P^2}{2\alpha^4 m^{\text{LP}}} + O(\alpha^{-1/2 + \varepsilon})$$

as $\alpha \to \infty$, where $\Lambda_n < 1$ is the nth eigenvalue of $d\Gamma(\sqrt{H_{\perp 0}^{\rm Pek}})$.

The result then follows in combination with the following **lower bound** on the ground state energy:

THEOREM [Brooks, S. 2023]:

$$E_{\alpha}(0) \ge \alpha^2 e^{\text{Pek}} + \frac{1}{2} \text{Tr} \left(\sqrt{H^{\text{Pek}}} - 1 \right) + O(\alpha^{-1/29 + \varepsilon})$$

THE CLASSICAL PEKAR FUNCTIONAL

The **classical approximation** amounts to replacing a(f) by $\int f(y)\varphi(y)dy$ for a complex-valued function φ . This leads to

$$\mathcal{E}^{\text{Pek}}(\psi,\varphi) = \int_{\mathbb{R}^3} |\nabla \psi(x)|^2 dx - 2\sqrt{\alpha} \int_{\mathbb{R}^6} \frac{|\psi(x)|^2 \Re \varphi(y)}{|x - y|^2} dx \, dy + \int_{\mathbb{R}^3} |\varphi(x)|^2 \, dx$$

Lieb (1977) proved that there exists a minimizer $\{\psi^{\text{Pek}}, \varphi^{\text{Pek}}\}$ of \mathcal{E}^{Pek} (with $\|\psi\|_2 = 1$) and it is **unique** up to translations and multiplication by a phase. ("self-trapping")

Lenzmann (2009) showed that the Hessian at a minimizer has only trivial zero-modes due to the symmetries.

Based on a traveling wave ansatz, one arrives at the Landau-Pekar prediction

$$m_{\text{eff}} = \frac{2}{3} \int |\nabla \varphi^{\text{Pek}}|^2 = \alpha^4 m^{\text{Pek}}$$

for the polaron's effective mass, now known to be valid as $\alpha \to \infty$ [Brooks, S., 2024].

Asymptotics of the Ground State Energy

Denote the **Pekar energy** by $\alpha^2 e^{\text{Pek}} = \min_{\|\psi\|_2=1} \mathcal{E}^{\text{Pek}}(\psi, \phi) < 0$. **Donsker and Varadhan** (1983) proved the validity of the Pekar approximation for the ground state energy:

$$\lim_{\alpha \to \infty} \alpha^{-2} \inf \operatorname{spec} \mathfrak{H}_{\alpha} = e^{\operatorname{Pek}}$$

They used the (Feynman 1955) path integral formulation of the problem, leading to a study of the path measure

$$\exp\left(\alpha\pi^3 \int_{\mathbb{R}} ds \frac{e^{-|s|}}{2} \int_0^T \frac{dt}{|\omega(t) - \omega(t+s)|}\right) d\mathbb{W}^T(\omega)$$

as $T \to \infty$, where \mathbb{W}^T denotes the Wiener measure of closed paths of length T.

Lieb and Thomas (1997) used operator techniques to obtain the quantitative bound

$$\alpha^2 e^{\text{Pek}} \ge \inf \operatorname{spec} \mathfrak{H}_{\alpha} \ge \alpha^2 e^{\text{Pek}} - O(\alpha^{9/5})$$

for large α . Upper bound follows from a simple product ansatz $\psi^{\text{Pek}} \otimes W(\varphi^{\text{Pek}})\Omega$.

QUANTUM FLUCTUATIONS

What is the leading order correction of $\inf \operatorname{spec} \mathfrak{H}_{\alpha}$ compared to $\alpha^2 e^{\operatorname{Pek}}$? With

$$\mathcal{F}^{\text{Pek}}(\varphi) = \min_{\psi} \mathcal{E}(\psi, \varphi) = \inf \text{spec} \left(-\Delta - 2\sqrt{\alpha}\Re\varphi * |x|^{-2} \right) + \int_{\mathbb{R}^3} |\varphi(x)|^2 dx$$

we expand around a minimizer $arphi^{\mathrm{Pek}}$

$$\mathcal{F}^{\text{Pek}}(\varphi) \approx \alpha^2 e^{\text{Pek}} + \langle \varphi - \varphi^{\text{Pek}} | H^{\text{Pek}} | \varphi - \varphi^{\text{Pek}} \rangle + O(\|\varphi - \varphi^{\text{Pek}}\|_2^3)$$

with H^{Pek} the **Hessian** at φ^{Pek} . We have $0 \leq H^{\text{Pek}} \leq 1$, and H^{Pek} has exactly **3** zero-modes due to translation invariance (Lenzmann 2009).

Re-introducing the field momentum and studying the resulting system of harmonic oscillators leads to the **prediction** (Allcock 1963)

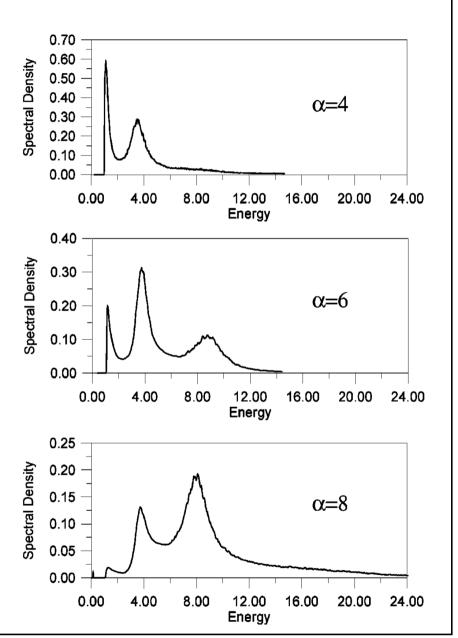
$$\inf\operatorname{spec}\mathfrak{H}_{\alpha}=\alpha^{2}e^{\operatorname{Pek}}+\frac{1}{2}\operatorname{Tr}\left(\sqrt{H^{\operatorname{Pek}}}-\mathbb{1}\right)+o(1)\quad\text{as }\alpha\to\infty$$

NUMERICS

Previous **numerical investigations** up to $\alpha \approx 8$ have not shown a sign of the excited states.

Diagrammatic quantum Monte Carlo study by [Mishchenko et al. 2000] of the **spectral density** defined by

$$\langle \Omega | e^{-t\mathfrak{H}_{\alpha}^{0}} | \Omega \rangle = \int_{0}^{\infty} e^{-t(E_{\alpha}(0) + \lambda)} d\mu(\lambda)$$

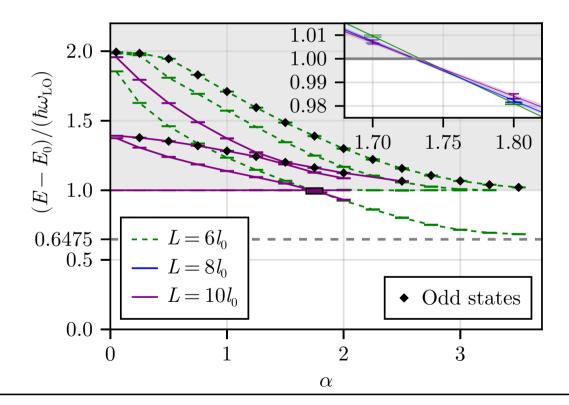


Numerics for a model in one dimension

For the Fröhlich model in **one dimension**, defined on $L^2(\mathbb{R}) \otimes \mathcal{F}(L^2(\mathbb{R}))$ as

$$\mathfrak{H}_{\alpha} = -\partial_x^2 - \sqrt{\alpha} \Phi(v_x) + \mathbb{N} \quad , \quad v_x(y) = \delta(x - y)$$

recent numerical investigations [Brand et al. 2025] have shown that the critical value for the appearance of the first bound state is $\alpha_c \approx 1.73$.



Conclusions

- We investigate the **energy**—**momentum spectrum** for the Fröhlich polaron model.
- In the strong coupling limit, we show that the number of bound states of $\mathfrak{H}_{\alpha}^{P=0}$ below the essential spectrum $[E_{\alpha}(0)+1,\infty)$ diverges as $\alpha\to\infty$.
- We derive upper bounds on the min-max values of \mathfrak{H}^P_{α} , which display a two-term asymptotics corresponding to the **classical approximation** and **quantum fluctuations** about the classical limit.
- In combination with a corresponding **lower bound** on the absolute ground state energy, this proves the existence of many excited eigenvalues at large coupling.
- It remains an **open problem** to determine (numerically) the critical coupling constant for the appearance of the first excited state.
- For a corresponding one-dimensional model, the numerics shows that $\alpha_c \approx 1.73$.