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Notion of concentration

Context: Semiclassical operator Py (depends on 7, i — 0) on manifold
M/R9/C?.

Prup = Anun, ||us|l2 = 1, behaviour of uy as i — 0. Typical behaviours:

@ uj, independent of 7 then ||up||,, independent of A.
o up ~ hPxq, with |Qu] = h* then ||up|, ~ b7 ”

@ Sum of previous behaviours.

—thuh +X up, = \pUp.

e Concentration: U C {x € R/ |x| > v/Xs} open, then
llunll2yy = O(e™ #). (linked to wavefront set)

@ How much: depends where.
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Hermite functions on R

Eigenvalue: E = h(2k+ 1), for ke N, V = X2,

|unl
(’)(h*l/ﬁ) O(h—l/fi)
| O(ecl=l/my
VP o o’z > T
O(h*%) O(K*)
{V>E} {V<E} {V>E)}
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forbidden region allowed region  forhidden region

Figure: Ngoc Nhi Nguyen. “Fermionic semiclassical LP estimates”. (2024)
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Known results

(M, g) Riemann manifold dimension d > 2, a( )

_thg up = )\huh,
1

lunllsqany = 0 ().

Saturation on the the d sphere.?

aChristopher Sogge. “Concerning the LP norm
of spectral clusters for second-order elliptic
operators on compact manifolds”. (1988).

Other known frameworks: —h2A, + V for V with some hypothesis®, A
on M without boundary?, second order elliptic operatorsS.

Herbert Koch and Daniel Tataru. “LP eigenfunction bounds for the Hermite
operator”. (2005), Herbert Koch, Daniel Tataru and Maciej Zworski. “Semiclassical
LP Estimates”. (2007).

2Yaiza Canzani and Jeffrey Galkowski. Geodesic Beams in Eigenfunction Analysis.
2023.

3Christopher Sogge. Problems related to the concentration of eigenfunctions. 2015.
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Concentration on phase space

Gaussian wave packets for 4 > 0 and y € R3

Ca 2 (o

L . (v) = (mh)~ d/4 gl isate=n |

such that 2 2 o v\ |
(D0 P )| < o~ tomnllomt
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Concentration on phase space

Gaussian wave packets for 4 > 0 and y € R3

—x0)%  .€0-(xg—
Xo 50()/) (ﬂ-h) d/46_%e’w

such that i i \
(o =x1)*+(€0—€1) ARV 1NN
h A  o—x)+(E0—€1)2
‘<¢x0,50a ¢X1’51>| s € 4h

Denote: Bu(x,&) = (2rh)~"/?(u, Dxe(-))12re), Yu € L3(R3). ]

B : L?(R3) — L?(R®) is an isometry, B*B = idj2(r3.
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Notion of concentration

—h2Au;-L at X2uh = A\pUp.

e Concentration: V C {(x,&) € R?/ x? + &% # A} open, then
| Bunll 2y = O(h>). (definition of wavefront set)




A framework on R~

[e] lele]

New state space

Bargmann space,

Fr = Im(B) = L2(C?) N {e—'i'if /fe H(Cd)}

where z = x — i€. With Hilbert basis: (ea = Cope za) .
a€eN?
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New state space

Bargmann space,

Fr = Im(B) = L2(C?) N {e—'i'if /fe H(Cd)}

. . . . Iz|2
where z = x — i€. With Hilbert basis: (ea = 0é’;:be_ﬁz”‘> .
aeNd

Let f € C°(C") grow at most polynomially, the Berezin-Toeplitz operator
associated is:

Th(f) D — Fh
g th(fg)

with domain D C Fy.
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Examples

o If f is holomorphic then Tx(f) = f X idg,,.
e For all o, B € N7,
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o If f is holomorphic then Tx(f) = f X idg,,.
e For all o, B € N7,

No concentration result for Berezin-Toeplitz operators! J
Harmonic oscillator : Tx(|z[?) = Y Tu(zZ)
1<j<d

The spectrum of Ty(|z|?) is purely discrete equal to {(k + d)h / k € N}.
The eigenspace of eigenvalue (k + d)h is span {e,/ |a| = k}.
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Consider the eigenvalue (|v| + d)h, then for all p € [2,400] there exists

C > 0 such that L
1 -4y

Q
R
LA AT
N——

2(d=3)
levlliseny < che ()
Optimal: becomes an equality for
v=(|v|,0,---,0).
0 —
0 2
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Projective space

CP? = (C4+1\{0}) /R with local coordinates

(20, ,2,) €CPY/ 20 £0} — C?
{ }

Zn

[ZO»"' azn]’_> (17?7 7> :(17W17"' ,Wn)'
0

20
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Projective space

CP? = (C4+1\{0}) /R with local coordinates

(20, ,2,) €CPY/ 20 £0} — C?
{ }

Zn

[ZO»"' azn]’_> (17?7 7) :(17W17"' ,Wn)'
0

20

Denote w = (1,wx, -+ ,W,) and (w) = /1 + |w|2.

Here N € N and % = N — +o00. Consider functions of the form

f(wg, -, W,,)V"V®N

<W>2N

with f holomorphic.

Hn = { Qwy, - -, wa)wN

<W>2N /QECSN[XL-“ 7XC/]}.

) . a~QN
with orthonormal basis (ea = ,,,N,a%) -
W T al<N
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On M a compact Kihler manifold or C9.

Tr(f) = Ni(fo + hfy + - - -) with principal symbol f,.

E € R/fy(x) = E = dfy(x) # 0, sequence Ay, P E, e such that
—-+0o0

||ehHL2(M) =1
Th(f)eh :Aheh + O(hoo)

Then, for all h € N and p € [2,+]

N

llenlle(my = O (h(d_%)(%_

) /

The same result applies on C? for d € N*.
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Saturation on CP

Consider H € CO(CP) such that

|20 |wl|?
H = = .
(202 = o = Wi+
For all a € N such that a < N,
a+1
Tn(H)(es) = e,.
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Saturation on CP

Consider H € CO(CP) such that

|20/ w/?
H = = .
([ZO;ZI]) |ZO|2 ¥ |Zl|2 ‘W|2 +1

For all a € N such that a < N,

Consider a sequence ay ~ % and p € [2,+0o0], then there exists C > 0,

independent of p, such that

leayllio(ceny ~ CNEGEE).
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|deas of proof

’ Lagrangian states (possibly time dependent) ‘

l/

Stable by Toeplitz oberators ‘ ’ Stable by time derivative‘

A —

Solution to (—ihd; + Tp(f)) 1 = 0 as a Lagrangian state.
Quantum propagator Uy ; as a Lagrangian state.

/ p(NCE ~ o))

1 ~
’Operators as Lagrangian states‘ hZ‘FN (A(t) Un,(x,x))(E)
p

(N(E = X))lex (x)?

p(hH(E = Tu(F)))(x.x) = it ~de=

p(0)ao(x) + O(1)
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o N R. Semiclassical concentration estimates for Berezin-Toeplitz
quasimodes for regular energies. 2025

o N R. Eigenvalues of non self-adjoint Toeplitz operators near an
elliptic critical value with analytic regularity. (soon)

@ PhD defense in june 2026

Thank you
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e Complex (symplectic) compact differential manifold M.

@ Holomorphic functions are constants — sections of a holomorphic
bundlew : L - M.

For a suitable bundle : quantum space Hy = HO(M, L®V) with
N = % — +o00.

Definition

My : L2(M, L®N) — Hy the orthogonal projector, for f € CO(M),

TN(f) = |_|Nf : ’HN —>HN

@ They are bounded: || Tn(f)| < [[fllLoe(m)-

o Tn(f)* = Tn(f), they are self-adjoint if and only if f is real-valued.
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