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Stochastic MPS Deterministic MPS

Deterministic MPS 1 .@ COPENHAGEN

Fix a bi-infinite sequence (A,),cz of d-tuples of complex D x D matrices with
A= (A7, AT ecte (©?)®?, M eMp(C) = (CP)®2

Here we denote, (An)phys—j, bond=(i,k) = (A§n))i,k-

On the 1-dimensional lattice, place A4, at site n. For a symmetric window [N, N]
we obtain the (genero.ll3 unnormalized) MPS on 2N +1 sites:

An AN b— - — Ay — - —A_Np1 A_N
[w(N)) =

Here, contraction of two rank-3 tensors along a virtual index a:

* N

L A 5 Y a(AR)ia(Be)a,s
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Stochastic MPS Deterministic MPS

Deterministic MPS 11 @ UNIVERSITY OF

. COPENHAGEN
°

Therefore, we have that

d
ey = > e AN AR i)

J—nN JIN
J—NsIN=1

Normalization is not assumed a priori, i.e. (¥(N)|¥(N)) need not equal 1.

@ Matrix product states (MPS) form a subset of many-body quantum states.

@ They are good approximations of several ‘physically relevant’ states, such as
ground states of gapped local Hamiltonians on I-dimensional systems.

© Random (TI) MPS typically have correlations between observables measured on
distinct sites that decay fast (with the distance separating the sites).

Lubashan Pathirana Stochastically Generated Matrix Product States 2/ 16



Stochastic MPS Generating a Random MPS

Generating a Random MPS & ... .

. COPENHAGEN
A random MPS can be obtained in different ways, such as (but not liited to)
@ Random homogeneous (TI): draw a single tensor 4 ~ )\ and set A4, = A for all n.
@ IID local tensors: (Ay),cz independent with common law .

© stochastically Stationary + Stochastically Correlated: (A4,,) jointly distributed
with identical marginals )\, but non-trivial spatial stochastic correlations.

Let X = (X,),ez be an irreducible, aperiodic Markov chain on the state space
S ={1,...,m} (m > 2), started in the stationary distribution 7. For each i€ S, let

(BS))neZ be i.i.d. with one-site law Ap, on the tensor space Cc? @ (CP)®2,
independent across ; and independent of X. Set

Ap = [-3£LXn)7 n €7,
and place (A,) as local tensors to generate the random MPS that is strictly

stationary (but not IID) with one-site law

m
Law(Ap) = Zm A, == A
i=1

© Non-stationary + inhomogeneous: Take A,, with law \,.

Lubashan Pathirana Stochastically Generated Matrix Product States EWAS



Stochastic MPS Generating a Random MPS

Random MPS considered here @ UNIVERSITY OF

. COPENHAGEN
°

Let )\ be a probability distribution on C? ® (CP)®2. Assume that (A,),cz iS a bi-
infinite sequence of random tensors such that

Law(Ap) = A, Vn €Z.
This setting encompasses: the IID case, the random TI (homogeneous) case, and
deterministic TI as the degenerate law.,

Such a sequence can be assumed to be defined on a common probability space
(Q, F,P) where P is determined by the marginal law A.

For any random object f on 2 we denote its realization at w € Q by f,.
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Two-Point Function Expectations

Expectation of a Local Observable .@ UNIVERSITY OF
Define the (random) transfer operator at site n by ¢,(-) = 25:1 Aﬁ")(.)(AE")) L
we see that for a local observable (,, at site n, the expectation of Q, in state
[¥(N)) (for N > |n|> is given by

(T(N)| On [W(N)) T&“{(ﬁN 0...0¢nt1 o(/Q\n 0 ppn—1 o...o¢_N}
(U(N)W(N)) Tr{¢no...¢_N}
With Tr{-} the Liouville (superoperator) trace:
$rx— >0 AwBit = My=3" A4, 0B,

(a) Expectation of a local observable 0, at site n in state |¥(N)).

> On
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Two-Point Function Expectations

Two-Point Function and Thermodynamic Limit & o

. COPENHAGEN
°

For local observables Q,,, 0,, supported at sites m,n (with N > max{|m/|, |n|}), define

_ [N O0m0y [¥(N)) — (U(N)[Om [¥(N)) (¥(N)|On [F(N))

fn(m,n): (T(N)|T(N)) (U(N)|T(N)) (T(N)[E(N))

When the limit exists, set
foo(m,n) := lim fn(Om,On).
N — oo

This quantity is random (via the marginal laws X\ of the local tensors).
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Decay In Correlations Two Existing Results

Two r‘esu.‘ts I @ UNIVERSITY OF

. COPENHAGEN

Theorem (Movassagh & Schenker - ‘21)

If the sequence of transfer operators ¢, associated to the sequence of local

tensors A, satisfies

@ Stationary and ergodic (for example: an IID sequence).

@ There is some Ny € N 50 that ¢y,_10...0¢g is Strictly positive with positive
probability.

@ Wwith probability 1, ¢g and ¢ot have no quantum states in the kernels.

then, there is a € (0,1) such that for any z € Z and for any two local observables

O, O, at sites m,n (resp.)

—m

foo (m» n) < C)\,u,z,@)m,@nﬂn

for allm < n withm <z <n, where Q3w C\ 20,0, w) i5 a (random) constant
that is almost surely finite.

y
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Decay In Correlations Two Existing Results

Two r‘esu.‘ts II @ UNIVERSITY OF

. COPENHAGEN

Theorem (Lancien & Perez-Garcia - ‘20)

If a random TI MPS is constructed by sampling A € C¢ ® (CP)®2 = CID? w.r.t. the
Gaussian distribution on CP? with mean 0 and covariance [1/(dD)|I pz,

(i.e. by sampling {(g;)i k) }1<j<d,i<ik<p independent w.r.t. to the complex Gaussian
distribution with mean 0 and variance 1/(dD))

then, there are absolute constants cy,ca,cs,ca SUCh that, for any local observables
Om and Q,, at sites m,n with |n —m| < N —c; logD/logd,

cg \In—ml
It <es (S2)7 onlON
with probability at least
1—eC2 min{D,dl/a}.
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Decay In Correlations Two Existing Results

Common Str‘u,ctu.r‘e @ UNIVERSITY OF

. COPENHAGEN
°

Both frameworks have:

@ Identical marginals for the local tensors (hence similarly distributed transfer
mapsd.

© Amost surely no states in the kernels of ¢, and ¢f.

@ Finite-time strict positivity of products: a random time N, (w) with
ON.(w)—1© -0 ¢o Strictly positive a.s.

(In Gaussian TI case, N, can be chosen deterministically: N, = 2[log D/logd],
a.s.)
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Assumptions Assumptions

ASSU.mptiOl'lS @ UNIVERSITY OF

. COPENHAGEN
L2

The similarly distributed sequence of local tensors (A,),cz defined on a common
probability space (2, F,P) satisfy the following assumptions:

Standing assumptions

CAD P{ker(¢o) NSp =0, ker(¢}) NSp =0} =1,
where Sp:={peMp: p>0, Trip =1}
(A2) Finite-time strict positivity:
P-a.S. there exists N.(w) € N with ¢n_()_1,, 0+ 0 do, Strictly positive;

Absolutely continuous laws on C?® (CP)®? satisfy (Al and (A2) in both TI and IID
settings, with 7 = 2[log D/logd].

Any (deterministic) primitive quantum channel satisfies both (Al) and (A2).

We denote
T(w) =inf{n : 1,5, 0...0 ¢y, IS Strictly positive}

There are other examples where (A2) happens with P{w : 7(w) > n} \(0 as n — oo,
with various rates in n.
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Assumptions Assumptions

Implications Under the Assumptions .@ UNIVERSITY OF

Under (AD-CA2), products &) := ¢, 1 0---0 ¢y are eventually irreducible and con-
tracting a.s. Hence there exist full-rank density matrices (Z,),cz and (Z!)nez
such that for any local observable Oy, i,

z' 10 _
im ()] O,y [9(N)) = < n41Otm.nj | Zm 1> P-almost surely.
— A, Apq H— -+~ Apgr A, [
| | | |
[~ )
| | | |
—~— An Ani H— o = A A —~—
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Gauge Transformation Dynamic Gauge Fixing

Gauge Fixing I .@ COPENHAGEN

Define the gauge transform (dynamic normalization) by

d
n 1 n — e n n
B = —(Z;+1>1/2A§ Nz ) =Y BM X (B
[¢n( n+1)] =1
One checks gn is CPTP and that, for any local observable, the thermodynamic limit
of expectations is invariant under this gauge.

The resulting MPS / Expectation is the following:

E

n]

O,
1\/1"
_4_: 7:\ A .
My

Here M, ~ +/Z!.

n

Ajm+l
Am“ e
Mm+2 M1
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Correlation Length A.s. Exponential Decay

Result I: Aimost-sure exponential decay @ UNIVERSITY OF

. COPENHAGEN

Theorem (Pathirana-Werner ‘'25+)

Under (AD-(CA2) there exists a random pu(w) € (0,1) such that for any x € Z there
is an a.s. finite g, (w) with the property that for allm <z <n withn—m > 2,

fsonm) < |Oml|[|On go (W) p(w) " =™ - a.5.
In the IID (or more generally, ergodic) case, i is a (deterministic) constant.

In the random TI (homogeneous) case, g, can be replaced by a site-independent
almost surely finite g(w).
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correlation Length Uniform in w results

P\_O.ndom TI Case @ UNIVERSITY OF

. COPENHAGEN
L2

Theorem (Pathirana-Werner ‘25+)

Assume (A and (A2). IfF A, = A with A~ )\ (random TI), then for each error
margin 0 < ¢ < 1 there exist deterministic constants K = K(e) > 0 and
5 =4(e) € (0,1), such that the same bound holds for all 2 < |n — m)|:

P{foo(n,m) < K[|On[|[|On 6"~} > 1 —€.
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correlation Length Uniform in w results

IID Case 9.

Theorem (Pathirana-Werner '25+)

If (Ay) are IID and satisfy (AD-CA2), then there are deterministic constant
Cpr, 8 >0 such that

P{ foo(n,m) < Cpr [Om||[[On]le™ "~} > 1 —e=Aln=ml,

for all |m —n| > 2.

| N

Remark

If one does not assume independence between local tensors, but assumes
asymptotic stochastic decorrelation (in "some” sense: such as mixing coefficients
pr>Pn, dn — 03, we can obtain that for each k € N there exists Cho k) With

P{ foo(mm) < Cpoty(s) I0mll 10nllIn = m[™*} > 1—|n —m|*.

for all |n —m| > 2.

If one assumes certain rates of convergence for the mixing coefficients
Pn,Un,dn, then the above rates can be improved to stretched exponentials.
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Maximum Separation Window

Mo.ximu.m Separ‘ation WIndOW @ UNIVERSITY OF

. COPENHAGEN
L2

Our last method is to consider the case where sites m,n € Z are separated by a
maximum size [, i.e. 2 < |m —n| < L. For such cases, we obtain:

Theorem (Pathirana-Werner '254)

Assume (A and (A2). For any maximum separation of length L >2 and 0 < e < 1
there exist deterministic constants K = K(e,L) >0 and § = §(¢, L) € (0,1) such
that for all2<|n—m|<L,

P{ foo(n,m) < KOl [|Onll8!"™} >1-e.

There is no meaningful way to generalize this result for L — oo (or for ¢ — 0) since
there is no guarantee that §L does not converge to 1 as L — oo (or as e — 0).

However, there are techniques that utilize rates of decay for P{r > n} and
rates (tails) of contraction strength so that given m,n € Z with 2 <|n—m|=1¢
we may produce K := K(£), § := §(¢) and ¢(¢) so that

P{ foo(n,m) < K[| Oml [On]l 5"} >1—c(0).

with K(¢) — K’ (for some finite K>, §¢,e(f) — 0 as £ — cc.
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Thank You!

@ UNIVERSITY OF
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Mixing Coefficients .@ pivessiry or

L 2
Let (Q,F,P) be a probability space and let A, B be two sub g-algebras. Then we
define the following measures of the correlation between A and B:
p(A,B) = sup {|corr(X,Y)| : Y € L*(A), X € L*(B), X,Y #0} ,

_ _ P(AN B)
P(A, B) = sup { ‘1 —]P’(A)]P’(B)
w(A,B) = sup{|P(B|A) —P(B)| : A€ A, BeB, P(A) >0}.

Let (X,) be a sequence of random variables and let Fi, = o(X, : n < k) and
Fk =0(X, :n>k). Then we define,

:A€ A, BeB, P(A),P(B) # o}

pn = sup p(Fi, F"T), gn = sup %(Fi, F*TF), @n = sup o(F, FTF).
keN keN keN
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Other Rates & Probabilities

@ UNIVERSITY OF

. COPENHAGEN
°

Let r(w) =inf{n € N: ¢¥_, 0---0 ¢y is strictly positive}, f(b) = P{r > b}, and, for
beNand u>2, (p(u):= 2:21 IP’({T =t}n{c(¢y_jo0---0¢f)>1— l/u}) Given m,n € Z
with 2 <|n —m| = ¢, there exist K(¢) >0, §(¢) € (0,1), and ¢(¢) € (0,1) such that

P{ foo (@m,On) < K(O)[|Om[||0all5(0) } > 1 €(0).

Assumptions on f, ¢

Rates For ¢(¢), 6(¢), K(€)

CA) Exp-Poly:
f(b) < Cre ", G(u) < Cou™8

e(t) = ©(1/1og(2 + 1))
5(0)¢ = exp< —O(£1=1/5/10g(2 + 0))
K() =Ciexp{®© (2+1)~1/7)}

(B) Poly-Poly:
f) 0167, (p(u) < CouF
Pick exponents p,o with

1-p
<p<l, T<a<1—p

a+1

() =6(2+0)")

for any n e (0, min{(a+1)p—1, Bo+p—1}
3(0)f = exp( — ©(U1=P=7))

K(¢) =Cy exp(@(l_"))

(C) Exp & cutoff:
f() < Cre™?, (y(u) = 0 for all u > ug

e(t) = 6(1/10g(2 + 1))
5(0) = exp (—O(1/log(2 + 1))
K(0) =Cs
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