Stochastically Generated Matrix Product States:

Correlation Decay in the Thermodynamic Limit

Lubashan Pathirana

University of Copenhagen Quantissima sur Oise, Cergy, France, - September '25

Joint (ongoing) work with Albert H Werner

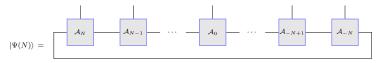
Deterministic MPS I

Fix a bi-infinite sequence $(\mathcal{A}_n)_{n\in\mathbb{Z}}$ of d-tuples of complex $D\times D$ matrices with

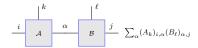
$$\mathcal{A}_n = (A_1^{(n)}, \dots, A_d^{(n)}) \in \mathbb{C}^d \otimes (\mathbb{C}^D)^{\otimes 2}, \qquad A_j^{(n)} \in \mathbb{M}_D(\mathbb{C}) \cong (\mathbb{C}^D)^{\otimes 2}.$$

Here we denote, $(\mathcal{A}_n)_{\mathrm{phys}=j, \ \mathrm{bond}=(i,k)} = (A_j^{(n)})_{i,k}$.

On the 1-dimensional lattice, place \mathcal{A}_n at site n_* For a symmetric window [-N,N] we obtain the (generally unnormalized) MPS on 2N+1 sites:



Here, contraction of two rank-3 tensors along a virtual index α :



Deterministic MPS II

Therefore, we have that

$$|\Psi(N)\rangle = \sum_{j_{-N},\dots,j_{N}=1}^{d} \operatorname{Tr}\left[A_{j_{-N}}^{(-N)} \cdots A_{j_{N}}^{(N)}\right] \, |j_{-N},\dots,j_{N}\rangle \, .$$

Normalization is *not* assumed a priori, i.e. $\langle \Psi(N)|\Psi(N)\rangle$ need not equal 1.

- Matrix product states (MPS) form a subset of many-body quantum states.
- They are good approximations of several 'physically relevant' states, such as ground states of gapped local Hamiltonians on I-dimensional systems.
- Random (TI) MPS typically have correlations between observables measured on distinct sites that decay fast (with the distance separating the sites).

Generating a Random MPS

A random MPS can be obtained in different ways, such as (but not limited to)

- **Q** Random homogeneous (TI): draw a single tensor $\mathcal{A} \sim \lambda$ and set $\mathcal{A}_n = \mathcal{A}$ for all n.
- ② IID local tensors: $(A_n)_{n\in\mathbb{Z}}$ independent with common law λ .
- $\textbf{§ Stochastically Stationary + Stochastically Correlated: } (\mathcal{A}_n) \text{ jointly distributed} \\ \text{with identical marginals } \lambda, \text{ but non-trivial spatial stochastic correlations.}$

Example

Let $X=(X_n)_{n\in\mathbb{Z}}$ be an irreducible, aperiodic Markov chain on the state space $S=\{1,\dots,m\}\ (m\geq 2)$, started in the stationary distribution $\pi.$ For each $i\in S$, let $(\mathcal{B}_n^{(i)})_{n\in\mathbb{Z}}$ be i.i.d. with one-site law λ_{B_i} on the tensor space $\mathbb{C}^d\otimes (\mathbb{C}^D)^{\otimes 2}$, independent across i and independent of X. Set

$$\mathcal{A}_n := \mathcal{B}_n^{(X_n)}, \quad n \in \mathbb{Z},$$

and place (\mathcal{A}_n) as local tensors to generate the random MPS that is strictly stationary (but not IID) with one-site law

$$Law(\mathcal{A}_0) = \sum_{i=1}^{m} \pi_i \, \lambda_{B_i} := \lambda.$$

lacktriangle Non-stationary + inhomogeneous: Take \mathcal{A}_n with law λ_n .

Random MPS considered here

Let λ be a probability distribution on $\mathbb{C}^d\otimes(\mathbb{C}^D)^{\otimes 2}$. Assume that $(\mathcal{A}_n)_{n\in\mathbb{Z}}$ is a bi-infinite sequence of random tensors such that

$$Law(\mathcal{A}_n) = \lambda, \quad \forall n \in \mathbb{Z}.$$

This setting encompasses: the IID case, the random TI (homogeneous) case, and deterministic TI as the degenerate law.

Such a sequence can be assumed to be defined on a common probability space $(\Omega,\mathcal{F},\mathbb{P})$ where \mathbb{P} is determined by the marginal law λ .

For any random object f on Ω we denote its realization at $\omega \in \Omega$ by f_{ω} .

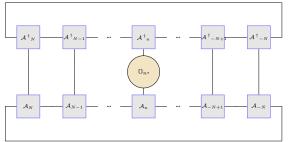
Expectation of a Local Observable

Define the (random) transfer operator at Site n by $\phi_n(\,\cdot\,) = \sum_{i=1}^d A_i^{(n)}(\,\cdot\,)(A_i^{(n)})^{\dagger},$ we see that for a local observable \mathbb{O}_n at site n, the expectation of \mathbb{O}_n in state $|\Psi(N)\rangle$ (for N>|n|) is given by

$$\frac{\langle \Psi(N) | \mathbb{O}_n | \Psi(N) \rangle}{\langle \Psi(N) | \Psi(N) \rangle} = \frac{\operatorname{Tr} \left\{ \phi_N \circ \dots \circ \phi_{n+1} \circ \widehat{\mathcal{O}_n} \circ \phi_{n-1} \circ \dots \circ \phi_{-N} \right\}}{\operatorname{Tr} \{ \phi_N \circ \dots \phi_{-N} \}}$$

With $\operatorname{Tr}\{\cdot\}$ the Liouville (superoperator) trace:

$$\phi: x \to \sum_{i=1}^d A_i x B_i^{\dagger} \implies M_{\phi} = \sum_{i=1}^d A_i \otimes \overline{B_i}$$
.



(a) Expectation of a local observable \mathbb{O}_n at site n in state $|\Psi(N)\rangle$.



(b) $\widehat{\mathcal{O}}_n$

Two-Point Function and Thermodynamic Limit

For local observables $\mathbb{O}_m, \mathbb{O}_n$ supported at sites m,n (with $N>\max\{|m|,|n|\}$), define

$$f_N(m,n) := \left| \frac{\left< \Psi(N) \right| \mathbb{O}_m \mathbb{O}_n \left| \Psi(N) \right>}{\left< \Psi(N) \right| \Psi(N) \right>} - \frac{\left< \Psi(N) \right| \mathbb{O}_m \left| \Psi(N) \right>}{\left< \Psi(N) \right| \Psi(N) \right>} \frac{\left< \Psi(N) \right| \mathbb{O}_n \left| \Psi(N) \right>}{\left< \Psi(N) \right| \Psi(N) \right>} \right|.$$

When the limit exists, set

$$f_{\infty}(m,n) := \lim_{N \to \infty} f_N(\mathbb{O}_m, \mathbb{O}_n).$$

This quantity is random (via the marginal laws λ of the local tensors).

Two results I

Theorem (Movassagh & Schenker - '21)

If the sequence of transfer operators ϕ_n associated to the sequence of local tensors \mathcal{A}_n satisfies

- Stationary and ergodic (for example: an IID sequence).
- ② There is some $N_0\in\mathbb{N}$ so that $\phi_{N_0-1}\circ\ldots\circ\phi_0$ is strictly positive with positive probability.
- lacktriangle With probability 1, ϕ_0 and ϕ_0 \dagger have no quantum states in the kernels.

then, there is a $\mu\in(0,1)$ such that for any $x\in\mathbb{Z}$ and for any two local observables \mathbb{O}_{m} , \mathbb{O}_n at sites m,n (resp.)

$$f_{\infty}(m,n) \le C_{\lambda,\mu,x,\mathbb{O}_m,\mathbb{O}_n} \mu^{n-m}$$

for all m < n with m < x < n, where $\Omega \ni \omega \mapsto C_{\lambda,\mu,x,\mathbb{O}_m}(\omega)$ is a (random) constant that is almost surely finite.

Two results II

Theorem (Lancien & Perez-Garcia - '21)

If a random TI MPS is constructed by sampling $\mathcal{A} \in \mathbb{C}^d \otimes (\mathbb{C}^D)^{\otimes 2} \cong \mathbb{C}^{dD^2}$ w.r.t. the Gaussian distribution on \mathbb{C}^{dD^2} with mean 0 and covariance $[1/(dD)]\mathbb{I}_{dD^2}$,

(i.e. by sampling $\{(g_j)_{i,k})\}_{1\leq j\leq d, 1\leq i,k\leq D}$ independent w.r.t. to the complex Gaussian distribution with mean 0 and variance 1/(dD))

then, there are absolute constants c_1,c_2,c_3,c_4 such that, for any local observables \mathbb{O}_m and \mathbb{O}_n at sites m,n with $|n-m|\leq N-c_1\log D/\log d$,

$$f_N(m,n) \le c_4 \left(\frac{c_3}{\sqrt{d}}\right)^{|n-m|} \|\mathbb{O}_n\| \|\mathbb{O}_m\|$$

with probability at least

$$1 - e^{-c_2 \min\{D, d^{1/3}\}}.$$

Common Structure

Both frameworks have:

- Identical marginals for the local tensors (hence similarly distributed transfer maps).
- **2** Almost surely no states in the kernels of ϕ_n and ϕ_n^\dagger .
- $\$ Finite-time strict positivity of products: a random time $N_*(\omega)$ with $\phi_{N_*(\omega)-1}\circ\cdots\circ\phi_0$ strictly positive a.s.

(In Gaussian TI case, \pmb{N}_* can be chosen deterministically: $\pmb{N}_* = 2\lceil \log D/\log d \rceil$, a.s.)

Assumptions

The similarly distributed sequence of local tensors $(\mathcal{A}_n)_{n\in\mathbb{Z}}$ defined on a common probability space $(\Omega,\mathcal{F},\mathbb{P})$ satisfy the following assumptions:

Standing assumptions

- (Al) $\mathbb{P}\left\{\ker(\phi_0)\cap\mathbb{S}_D=\emptyset,\ \ker(\phi_0^\dagger)\cap\mathbb{S}_D=\emptyset\right\}=1$, where $\mathbb{S}_D:=\{\rho\in\mathbb{M}_D:\ \rho\geq 0,\ \mathrm{Tr}[\rho]=1\}$.
- (A2) Finite-time strict positivity: \mathbb{P} -a.s. there exists $N_*(\omega) \in \mathbb{N}$ with $\phi_{N_*(\omega)-1;\omega} \circ \cdots \circ \phi_{0;\omega}$ strictly positive;

Absolutely continuous laws on $\mathbb{C}^d\otimes (\mathbb{C}^D)^{\otimes 2}$ satisfy (Al) and (A2) in both TI and IID settings, with $\tau=2\lceil\log D/\log d\rceil$.

Any (deterministic) primitive quantum channel satisfies both (AI) and (A2).

We denote

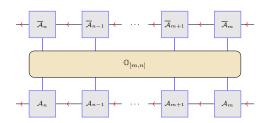
$$au(\omega) = \inf\{n: \phi_{n-1;\omega} \circ \ldots \circ \phi_{0;\omega} \text{ is strictly positive}\}$$

There are other examples where (A2) happens with $\mathbb{P}\{\omega:\tau(\omega)>n\}\searrow 0$ as $n\to\infty$, with various rates in n.

Implications Under the Assumptions

Under (AI)-(A2), products $\Phi^{(n)}:=\phi_{n-1}\circ\cdots\circ\phi_0$ are eventually irreducible and contracting a.s. Hence there exist full-rank density matrices $(Z_n)_{n\in\mathbb{Z}}$ and $(Z_n')_{n\in\mathbb{Z}}$ such that for any local observable $\mathbb{O}_{[m,n]}$,

$$\lim_{N\to\infty}\frac{\langle\Psi(N)|\;\mathbb{O}_{[m,n]}\;|\Psi(N)\rangle}{\langle\Psi(N)|\Psi(N)\rangle}=\frac{\left\langle Z'_{n+1}|\widehat{\mathcal{O}}_{[m,n]}|Z_{m-1}\right\rangle}{\left\langle Z'_{n+1}\left|\left(\phi_{n}\circ\cdots\circ\phi_{m}\right)\right|Z_{m-1}\right\rangle}\quad\mathbb{P}\text{-almost surely}.$$



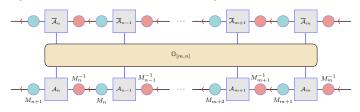
Gauge Fixing I

Define the gauge transform (dynamic normalization) by

$$B_i^{(n)} := \frac{1}{\sqrt{\operatorname{Tr}\left[\phi_n^\dagger(Z_{n+1}')\right]}} (Z_{n+1}')^{1/2} A_i^{(n)} (Z_n')^{-1/2}, \qquad \widetilde{\phi}_n(X) = \sum_{i=1}^d B_i^{(n)} \, X \, (B_i^{(n)})^\dagger.$$

One checks ϕ_n is CPTP and that, for any local observable, the thermodynamic limit of expectations is invariant under this gauge.

The resulting MPS / Expectation is the following:



Here $M_n \approx \sqrt{Z_n'}$.

Result 1: Almost-sure exponential decay

Theorem (Pathirana-Werner '25+)

Under (Al)-(A2) there exists a random $\mu(\omega) \in (0,1)$ such that for any $x \in \mathbb{Z}$ there is an a.s. finite $g_x(\omega)$ with the property that for all m < x < n with $n-m \geq 2$,

$$f_{\infty}^{\omega}(n,m) \leq \|\mathbb{O}_m\| \|\mathbb{O}_n\| g_x(\omega) \mu(\omega)^{n-m}$$
 a.s.

In the IID (or more generally, ergodic) case, μ is a (deterministic) constant.

In the random TI (homogeneous) case, g_x can be replaced by a site-independent almost surely finite $g(\omega)$.

Random TI Case

Theorem (Pathirana-Werner '25+)

Assume (AI) and (A2). If $A_n \equiv \mathcal{A}$ with $\mathcal{A} \sim \lambda$ (random TI), then for each error margin $0 < \epsilon < 1$ there exist deterministic constants $K = K(\epsilon) > 0$ and $\delta = \delta(\epsilon) \in (0,1)$, such that the same bound holds for all $2 \leq |n-m|$:

$$\mathbb{P}\{f_{\infty}(n,m) \le K \|\mathbb{O}_n\| \|\mathbb{O}_n\| \delta^{|n-m|}\} \ge 1 - \epsilon.$$

IID Case

Theorem (Pathirana-Werner '25+)

If (A_n) are IID and satisfy (Al)-(A2), then there are deterministic constant $C_{\rm pr}, \beta>0$ such that

$$\mathbb{P}\left\{ f_{\infty}(n,m) \leq C_{\operatorname{pr}} \|\mathbb{O}_{m}\| \|\mathbb{O}_{n}\| e^{-\beta|n-m|} \right\} \geq 1 - e^{-\beta|n-m|}.$$

for all $|m-n| \geq 2$.

Remark

If one does not assume independence between local tensors, but assumes asymptotic stochastic decorrelation (in "some" sense: such as mixing coefficients $\rho_n, \psi_n, \phi_n \to 0$), we can obtain that for each $k \in \mathbb{N}$ there exists $C_{\mathrm{poly}(k)}$ with

$$\mathbb{P}\left\{ f_{\infty}(n,m) \leq C_{\text{poly}(k)} \|\mathbb{O}_{m}\| \|\mathbb{O}_{n}\| |n-m|^{-k} \right\} \geq 1 - |n-m|^{-k}.$$

for all $|n-m| \geq 2$.

If one assumes certain rates of convergence for the mixing coefficients ho_n, ψ_n, ϕ_n , then the above rates can be improved to stretched exponentials.

Maximum Separation Window

Our last method is to consider the case where sites $m,n\in\mathbb{Z}$ are separated by a maximum size L, i.e. $2\leq |m-n|\leq L$. For such cases, we obtain:

Theorem (Pathirana-Werner '25+)

Assume (Al) and (A2). For any maximum separation of length L>2 and $0<\epsilon<1$ there exist deterministic constants $K=K(\epsilon,L)>0$ and $\delta=\delta(\epsilon,L)\in(0,1)$ such that for all $2\leq |n-m|\leq L$,

$$\mathbb{P}\left\{ f_{\infty}(n,m) \leq K \|\mathbb{O}_{m}\| \|\mathbb{O}_{n}\| \delta^{|n-m|} \right\} \geq 1 - \epsilon.$$

There is no meaningful way to generalize this result for $L\to\infty$ (or for $\epsilon\to0$) since there is no guarantee that δ^L does not converge to 1 as $L\to\infty$ (or as $\epsilon\to0$).

However, there are techniques that utilize rates of decay for $\mathbb{P}\{\tau>n\}$ and rates (tails) of **contraction strength** so that given $m,n\in\mathbb{Z}$ with $2\leq |n-m|=\ell$ we may produce $K:=K(\ell),\,\delta:=\delta(\ell)$ and $\epsilon(\ell)$ so that

$$\mathbb{P}\left\{ f_{\infty}(n,m) \leq K \|\mathbb{O}_{m}\| \|\mathbb{O}_{n}\| \delta^{|n-m|} \right\} \geq 1 - \epsilon(\ell).$$

with $K(\ell) \to K'$ (for some finite K') , $\delta^\ell, \epsilon(\ell) \to 0$ as $\ell \to \infty$.

 $f(X) = f(X_0) + \sum_{j=1} \partial_j f(X) \cdot X^j + \sum_{j=1} \sum_{k=1} \partial_j \partial_k f(X) \cdot [X^j, X^k]$ $\lim_{t \in \Pi(\mu^j)} \int_{X \times Y} c(x, y) \, dr(x, y) = \sup_{u, t} \int_X u(x) \, d\mu(x) + \int_Y v(y) \, d\nu(y)$ $\mathbb{E}[\xi \cdot \mathbb{E}[\eta|\mathcal{F}]] = \mathbb{E}[\eta \cdot \mathbb{E}[\xi|\mathcal{F}]] = \mathbb{E}[\mathbb{E}[\xi|\mathcal{F}] \cdot \mathbb{E}[\eta|\mathcal{F}]]$ $\frac{f(X) = f(X_0) + \sum_{k=1} Akp^k A_k}{n} \sum_{k=0}^{n} J \xrightarrow{1} J \xrightarrow{1} J \downarrow (x) d\mu(y)$ $\Phi(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} F = G \frac{mM}{r^2}$ $\mathbb{E}[\xi \cdot \mathbb{E}[\eta|\mathcal{F}]] = \mathbb{E}[\eta \cdot \mathbb{E}[\xi|\mathcal{F}]] = \mathbb{E}[\mathbb{E}[\xi|\mathcal{F}] \cdot \mathbb{E}[\eta|\mathcal{F}]]$

Thank You!

Mixing Coefficients

Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let \mathcal{A} , \mathcal{B} be two SUB σ -algebras. Then we define the following measures of the correlation between \mathcal{A} and \mathcal{B} :

$$\begin{split} \rho(\mathcal{A},\mathcal{B}) &= \sup \left\{ |\mathit{corr}(X,Y)| \ : \ Y \in L^2(\mathcal{A}), \ X \in L^2(\mathcal{B}), \ X,Y \neq 0 \right\}, \\ \psi(\mathcal{A},\mathcal{B}) &= \sup \left\{ \left| 1 - \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)\mathbb{P}(B)} \right| : A \in \mathcal{A}, \ B \in \mathcal{B}, \ \mathbb{P}(A),\mathbb{P}(B) \neq 0 \right\} \\ \varphi(\mathcal{A},\mathcal{B}) &= \sup \left\{ |\mathbb{P}(B|A) - \mathbb{P}(B)| \ : \ A \in \mathcal{A}, \ B \in \mathcal{B}, \ \mathbb{P}(A) > 0 \right\}. \end{split}$$

Definition

Let (X_n) be a sequence of random variables and let $\mathcal{F}_k=\sigma(X_n:n\leq k)$ and $\mathcal{F}^k=\sigma(X_n:n\geq k)$. Then we define,

$$\rho_n \ := \ \sup_{k \in \mathbb{N}} \ \rho(\mathcal{F}_k, \mathcal{F}^{n+k}) \,, \quad \psi_n \ := \ \sup_{k \in \mathbb{N}} \ \psi(\mathcal{F}_k, \mathcal{F}^{n+k}) \,, \quad \varphi_n \ := \ \sup_{k \in \mathbb{N}} \ \varphi(\mathcal{F}_k, \mathcal{F}^{n+k}) \,.$$

Other Rates & Probabilities

Let $au(\omega)=\inf\{n\in\mathbb{N}:\ \phi_{n-1}^\omega\circ\cdots\circ\phi_0^\omega\ \text{is strictly positive}\}, f(b)=\mathbb{P}\{\tau>b\}, \ \text{and, for}\ b\in\mathbb{N}\ \text{and}\ u\geq 2,\ \zeta_b(u):=\sum_{t=1}^b\mathbb{P}\Big(\{\tau=t\}\cap\{\mathsf{C}(\phi_{t-1}^\omega\circ\cdots\circ\phi_0^\omega)>1-1/u\}\Big).$ Given $m,n\in\mathbb{Z}$ with $2\leq |n-m|=\ell$, there exist $K(\ell)>0,\ \delta(\ell)\in(0,1),\ \text{and}\ \epsilon(\ell)\in(0,1)$ such that $\mathbb{P}\Big\{\,f_\infty(\mathbb{O}_m,\mathbb{O}_n)\ \leq\ K(\ell)\,\|\mathcal{O}_m\|\,\|\mathcal{O}_n\|\,\delta(\ell)^{\,\ell}\Big\}\ \geq\ 1-\epsilon(\ell).$

Assumptions on f,ζ	Rates for $\epsilon(\ell)$, $\delta(\ell)^\ell$, $K(\ell)$
(A) Exp-Poly:	$\epsilon(\ell) = \Theta(1/\log(2+\ell))$
$f(b) \le C_1 e^{-\gamma b}, \zeta_b(u) \le C_2 u^{-\beta}$	$\delta(\ell)^{\ell} = \exp\left(-\Theta\left(\ell^{1-1/\beta}/\log(2+\ell)\right)\right)$
	$K(\ell) = C_1 \exp\left\{\Theta\left(2+l\right)^{-1/\beta}\right\}$
(B) Poly-Poly:	$\epsilon(\ell) = \Theta((2+\ell)^{-\eta})$
$f(b) \le C_1 b^{-\alpha}, \zeta_b(u) \le C_2 u^{-\beta}$	for any $\eta \in \left(0, \min\{(\alpha+1)\rho-1, \beta\sigma+\rho-1\}\right)$
Pick exponents ρ, σ with	$\delta(\ell)^{\ell} = \exp\left(-\Theta(l^{1-\rho-\sigma})\right)$
$\frac{1}{\alpha+1} < \rho < 1, \frac{1-\rho}{\beta} < \sigma < 1-\rho$	$K(\ell) = C_2 \exp(\Theta(l^{-\sigma}))$
(C) Exp & cutoff:	$\epsilon(\ell) = \Theta(1/\log(2+\ell))$
$f(b) \leq C_1 e^{-\gamma b}$, $\zeta_b(u) = 0$ for all $u \geq u_0$	$\delta(\ell)^{\ell} = \exp\left(-\Theta(l/\log(2+l))\right)$
	$K(\ell) = C_3$