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Stochastic MPS Deterministic MPS

Deterministic MPS I

Fix a bi–infinite sequence (An)n∈Z of d-tuples of complex D ×D matrices with

An = (A(n)
1 , . . . , A

(n)
d

) ∈ Cd ⊗ (CD)⊗2, A
(n)
j ∈ MD(C) ∼= (CD)⊗2.

Here we denote, (An)phys=j, bond=(i,k) = (A(n)
j )i,k.

On the 1-dimensional lattice, place An at site n. For a symmetric window [−N,N ]
we obtain the (generally unnormalized) MPS on 2N+1 sites:

|Ψ(N)〉 =

AN AN−1 · · · A0 · · · A−N+1 A−N

Here, contraction of two rank–3 tensors along a virtual index α:

A
i

k

B
j

`

α ∑
α

(Ak)i,α(B`)α,j
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Stochastic MPS Deterministic MPS

Deterministic MPS II

Therefore, we have that

|Ψ(N)〉 =
d∑

j−N ,...,jN =1

Tr

[
A

(−N)
j−N

· · ·A(N)
jN

]
|j−N , . . . , jN 〉 .

Normalization is not assumed a priori, i.e. 〈Ψ(N)|Ψ(N)〉 need not equal 1.

1 Matrix product states (MPS) form a subset of many-body quantum states.

2 They are good approximations of several ‘physically relevant’ states, such as
ground states of gapped local Hamiltonians on 1-dimensional systems.

3 Random (TI) MPS typically have correlations between observables measured on
distinct sites that decay fast (with the distance separating the sites).
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Stochastic MPS Generating a Random MPS

Generating a Random MPS
A random MPS can be obtained in different ways, such as (but not limited to)

1 Random homogeneous (TI): draw a single tensor A ∼ λ and set An = A for all n.

2 IID local tensors: (An)n∈Z independent with common law λ.

3 Stochastically Stationary + Stochastically Correlated: (An) jointly distributed
with identical marginals λ, but non-trivial spatial stochastic correlations.

Example

Let X = (Xn)n∈Z be an irreducible, aperiodic Markov chain on the state space
S = {1, . . . ,m} (m ≥ 2), started in the stationary distribution π. For each i ∈ S, let

(B(i)
n )n∈Z be i.i.d. with one-site law λBi

on the tensor space Cd ⊗ (CD)⊗2,
independent across i and independent of X. Set

An := B(Xn)
n , n ∈ Z,

and place (An) as local tensors to generate the random MPS that is strictly
stationary (but not IID) with one-site law

Law(A0) =
m∑

i=1

πi λBi
:= λ.

4 Non-stationary + inhomogeneous: Take An with law λn.
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Stochastic MPS Generating a Random MPS

Random MPS considered here

Let λ be a probability distribution on Cd ⊗ (CD)⊗2. Assume that (An)n∈Z is a bi-
infinite sequence of random tensors such that

Law(An) = λ, ∀n ∈ Z.

This setting encompasses: the IID case, the random TI (homogeneous) case, and
deterministic TI as the degenerate law.

Such a sequence can be assumed to be defined on a common probability space
(Ω,F ,P) where P is determined by the marginal law λ.

For any random object f on Ω we denote its realization at ω ∈ Ω by fω.
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Two-Point Function Expectations

Expectation of a Local Observable
Define the (random) transfer operator at site n by φn( · ) =

∑d

i=1 A
(n)
i ( · )(A(n)

i ) † ,

we see that for a local observable On at site n, the expectation of On in state
|Ψ(N)〉 (for N > |n|) is given by

〈Ψ(N)|On |Ψ(N)〉
〈Ψ(N)|Ψ(N)〉

=
Tr

{
φN ◦ . . . ◦ φn+1 ◦ Ôn ◦ φn−1 ◦ . . . ◦ φ−N

}
Tr{φN ◦ . . . φ−N }

.

With Tr{·} the Liouville (superoperator) trace:

φ : x →
∑d

i=1 AixBi
† =⇒ Mφ =

∑d

i=1 Ai ⊗Bi.

AN AN−1 … An … A−N+1 A−N

A †
N A †

N−1 … A †
n

… A †
−N+1 A †

−N

On.

(a) Expectation of a local observable On at site n in state |Ψ(N)〉.

An

An

On

(b) Ôn
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Two-Point Function Expectations

Two-Point Function and Thermodynamic Limit

For local observables Om,On supported at sites m,n (with N > max{|m|, |n|}), define

fN (m,n) :=
∣∣∣ 〈Ψ(N)|OmOn |Ψ(N)〉

〈Ψ(N)|Ψ(N)〉
−

〈Ψ(N)|Om |Ψ(N)〉
〈Ψ(N)|Ψ(N)〉

〈Ψ(N)|On |Ψ(N)〉
〈Ψ(N)|Ψ(N)〉

∣∣∣ .
When the limit exists, set

f∞(m,n) := lim
N→∞

fN (Om,On).

This quantity is random (via the marginal laws λ of the local tensors).
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Decay In Correlations Two Existing Results

Two results I

Theorem (Movassagh & Schenker - ’21)

If the sequence of transfer operators φn associated to the sequence of local
tensors An satisfies

1 Stationary and ergodic (for example: an IID sequence).

2 There is some N0 ∈ N so that φN0−1 ◦ . . . ◦ φ0 is strictly positive with positive
probability.

3 With probability 1, φ0 and φ0 † have no quantum states in the kernels.

then, there is a µ ∈ (0, 1) such that for any x ∈ Z and for any two local observables
Om, On at sites m,n (resp.)

f∞(m,n) ≤ Cλ,µ,x,Om,Onµ
n−m

for all m < n with m < x < n, where Ω 3 ω 7→ Cλ,µ,x,Om,On (ω) is a (random) constant
that is almost surely finite.
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Decay In Correlations Two Existing Results

Two results II

Theorem (Lancien & Perez-Garcia - ’21)

If a random TI MPS is constructed by sampling A ∈ Cd ⊗ (CD)⊗2 ∼= CdD2
w.r.t. the

Gaussian distribution on CdD2
with mean 0 and covariance [1/(dD)]IdD2 ,

(i.e. by sampling {(gj)i,k)}1≤j≤d,1≤i,k≤D independent w.r.t. to the complex Gaussian
distribution with mean 0 and variance 1/(dD))
then, there are absolute constants c1, c2, c3, c4 such that, for any local observables
Om and On at sites m,n with |n−m| ≤ N − c1 logD/ log d,

fN (m,n) ≤ c4

(
c3√
d

)|n−m|
‖On‖‖Om‖

with probability at least

1 − e−c2 min{D,d1/3}.
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Decay In Correlations Two Existing Results

Common Structure

Both frameworks have:

1 Identical marginals for the local tensors (hence similarly distributed transfer
maps).

2 Almost surely no states in the kernels of φn and φ†
n.

3 Finite-time strict positivity of products: a random time NNN∗(ω) with
φNNN∗(ω)−1 ◦ · · · ◦ φ0 strictly positive a.s.

(In Gaussian TI case, NNN∗ can be chosen deterministically: NNN∗ = 2dlogD/ log de,
a.s.)
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Assumptions Assumptions

Assumptions

The similarly distributed sequence of local tensors (An)n∈Z defined on a common
probability space (Ω,F ,P) satisfy the following assumptions:

Standing assumptions

(A1) P
{

ker(φ0) ∩ SD = ∅, ker(φ†
0) ∩ SD = ∅

}
= 1,

where SD := {ρ ∈ MD : ρ ≥ 0, Tr [ρ] = 1}.
(A2) Finite-time strict positivity:

P-a.s. there exists NNN∗(ω) ∈ N with φNNN∗(ω)−1;ω ◦ · · · ◦ φ0;ω strictly positive;

Absolutely continuous laws on Cd ⊗ (CD)⊗2 satisfy (A1) and (A2) in both TI and IID
settings, with τ = 2dlogD/ log de.

Any (deterministic) primitive quantum channel satisfies both (A1) and (A2).

We denote
τ(ω) = inf{n : φn−1;ω ◦ . . . ◦ φ0;ω is strictly positive}

There are other examples where (A2) happens with P{ω : τ(ω) > n} ↘ 0 as n → ∞,
with various rates in n.
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Assumptions Assumptions

Implications Under the Assumptions

Under (A1)–(A2), products Φ(n) := φn−1 ◦ · · · ◦ φ0 are eventually irreducible and con-
tracting a.s. Hence there exist full-rank density matrices (Zn)n∈Z and (Z′

n)n∈Z
such that for any local observable O[m,n],

lim
N→∞

〈Ψ(N)| O[m,n] |Ψ(N)〉
〈Ψ(N)|Ψ(N)〉

=

〈
Z′

n+1|Ô[m,n]|Zm−1
〉〈

Z′
n+1

∣∣(φn ◦ · · · ◦ φm

)∣∣Zm−1
〉 P-almost surely.

An An−1 . . . Am+1 Am

An An−1 . . . Am+1 Am

O[m,n]
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Gauge Transformation Dynamic Gauge Fixing

Gauge Fixing I

Define the gauge transform (dynamic normalization) by

B
(n)
i :=

1√
Tr

[
φ†

n(Z′
n+1)

] (Z′
n+1)1/2A

(n)
i (Z′

n)−1/2, φ̃n(X) =
d∑

i=1

B
(n)
i X (B(n)

i )†.

One checks φ̃n is CPTP and that, for any local observable, the thermodynamic limit
of expectations is invariant under this gauge.

The resulting MPS / Expectation is the following:

An An−1 . . . Am+1 Am

An An−1 . . . Am+1 Am

O[m,n]

Mn+1 Mn Mm+2 Mm+1

M−1
n M−1

n−1 M−1
m+1 M−1

m

Here Mn ≈
√
Z′

n.
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Correlation Length A.s. Exponential Decay

Result 1: Almost-sure exponential decay

Theorem (Pathirana–Werner ’25+)

Under (A1)–(A2) there exists a random µ(ω) ∈ (0, 1) such that for any x ∈ Z there
is an a.s. finite gx(ω) with the property that for all m < x < n with n−m ≥ 2,

fω
∞(n,m) ≤ ‖Om‖ ‖On‖ gx(ω)µ(ω) n−m a.s.

In the IID (or more generally, ergodic) case, µ is a (deterministic) constant.

In the random TI (homogeneous) case, gx can be replaced by a site-independent
almost surely finite g(ω).
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Correlation Length Uniform in ω results

Random TI Case

Theorem (Pathirana–Werner ’25+)

Assume (A1) and (A2). If An ≡ A with A ∼ λ (random TI), then for each error
margin 0 < ε < 1 there exist deterministic constants K = K(ε) > 0 and
δ = δ(ε) ∈ (0, 1), such that the same bound holds for all 2 ≤ |n−m|:

P{f∞(n,m) ≤ K‖On‖‖On‖δ|n−m|} ≥ 1 − ε.

Lubashan Pathirana Stochastically Generated Matrix Product States 14 / 16



Correlation Length Uniform in ω results

IID Case

Theorem (Pathirana–Werner ’25+)

If (An) are IID and satisfy (A1)–(A2), then there are deterministic constant
Cpr, β > 0 such that

P
{
f∞(n,m) ≤ Cpr ‖Om‖ ‖On‖ e−β|n−m|

}
≥ 1 − e−β|n−m|.

for all |m− n| ≥ 2.

Remark

If one does not assume independence between local tensors, but assumes
asymptotic stochastic decorrelation (in ”some” sense: such as mixing coefficients
ρn, ψn, φn → 0), we can obtain that for each k ∈ N there exists Cpoly(k) with

P
{
f∞(n,m) ≤ Cpoly(k) ‖Om‖ ‖On‖ |n−m|−k

}
≥ 1 − |n−m|−k.

for all |n−m| ≥ 2.

If one assumes certain rates of convergence for the mixing coefficients
ρn, ψn, φn, then the above rates can be improved to stretched exponentials.
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Maximum Separation Window

Maximum Separation Window

Our last method is to consider the case where sites m,n ∈ Z are separated by a
maximum size L, i.e. 2 ≤ |m− n| ≤ L. For such cases, we obtain:

Theorem (Pathirana–Werner ’25+)

Assume (A1) and (A2). For any maximum separation of length L > 2 and 0 < ε < 1
there exist deterministic constants K = K(ε, L) > 0 and δ = δ(ε, L) ∈ (0, 1) such
that for all 2 ≤ |n−m| ≤ L,

P
{
f∞(n,m) ≤ K ‖Om‖ ‖On‖ δ |n−m|

}
≥ 1 − ε.

There is no meaningful way to generalize this result for L → ∞ (or for ε → 0) since
there is no guarantee that δL does not converge to 1 as L → ∞ (or as ε → 0).

However, there are techniques that utilize rates of decay for P{τ > n} and
rates (tails) of contraction strength so that given m,n ∈ Z with 2 ≤ |n−m| = `
we may produce K := K(`), δ := δ(`) and ε(`) so that

P
{
f∞(n,m) ≤ K ‖Om‖ ‖On‖ δ |n−m|

}
≥ 1 − ε(`).

with K(`) → K′ (for some finite K′) , δ`, ε(`) → 0 as ` → ∞.
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Thank You!



Mixing Coefficients

Definition

Let (Ω,F ,P) be a probability space and let A, B be two sub σ-algebras. Then we
define the following measures of the correlation between A and B:

ρ(A,B) = sup
{

|corr(X,Y )| : Y ∈ L2(A), X ∈ L2(B), X, Y 6= 0
}
,

ψ(A,B) = sup
{∣∣∣1 −

P(A ∩B)
P(A)P(B)

∣∣∣ : A ∈ A, B ∈ B, P(A),P(B) 6= 0
}

ϕ(A,B) = sup {|P(B|A) − P(B)| : A ∈ A, B ∈ B, P(A) > 0} .

Definition

Let (Xn) be a sequence of random variables and let Fk = σ(Xn : n ≤ k) and
Fk = σ(Xn : n ≥ k). Then we define,

ρn := sup
k∈N

ρ(Fk,Fn+k) , ψn := sup
k∈N

ψ(Fk,Fn+k) , ϕn := sup
k∈N

ϕ(Fk,Fn+k) .
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Other Rates & Probabilities

Let τ(ω) = inf{n ∈ N : φω
n−1 ◦ · · · ◦ φω

0 is strictly positive}, f(b) = P{τ > b}, and, for

b ∈ N and u ≥ 2, ζb(u) :=
∑b

t=1 P
(

{τ = t} ∩ {c(φω
t−1 ◦ · · · ◦φω

0 ) > 1 − 1/u}
)
. Given m,n ∈ Z

with 2 ≤ |n−m| = `, there exist K(`) > 0, δ(`) ∈ (0, 1), and ε(`) ∈ (0, 1) such that

P
{
f∞(Om,On) ≤ K(`) ‖Om‖ ‖On‖ δ(`) `

}
≥ 1 − ε(`).

Assumptions on f, ζ Rates for ε(`), δ(`)`, K(`)
(A) Exp–Poly:
f(b) ≤ C1e−γb, ζb(u) ≤ C2u−β

ε(`) = Θ
(

1/ log(2 + `)
)

δ(`)` = exp
(

− Θ
(
` 1−1/β/ log(2 + `)

))
K(`) = C1 exp

{
Θ

(
2 + l)−1/β

)}
(B) Poly–Poly:
f(b) ≤ C1b−α, ζb(u) ≤ C2u−β

Pick exponents ρ, σ with
1

α+ 1
< ρ < 1,

1 − ρ

β
< σ < 1 − ρ

ε(`) = Θ
(

(2 + `)−η
)

for any η ∈
(

0, min{(α+ 1)ρ− 1, βσ + ρ− 1}
)

δ(`)` = exp
(

− Θ(l 1−ρ−σ)
)

K(`) = C2 exp
(

Θ
(
l−σ

))
(C) Exp & cutoff:
f(b) ≤ C1e−γb, ζb(u) = 0 for all u ≥ u0

ε(`) = Θ
(

1/ log(2 + `)
)

δ(`)` = exp (−Θ(l/ log(2 + l)))
K(`) = C3
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