Renormalizing Generalized Spin–Boson Models

Joint work with Benjamin Alvarez, Davide Lonigro and Javier Martín

Sascha Lill sali@math.ku.dk

University of Copenhagen

September 16, 2025

Generalized Spin-Boson Models: The Hilbert Space

 (Generalized) Spin-boson models are standard in quantum optics to describe emission and absorption of light.

- "Generalized spin" means D-level quantum system with Hilbert space \mathbb{C}^D . (E.g., for $N \in \mathbb{N}$ qubits we have $D = 2^N$)
- "Boson" field described by symmetric Fock space

$$\mathcal{F} := \bigoplus_{n=0}^{\infty} L^2(\mathbb{R}^d)^{\otimes_{\mathbf{s}} n} .$$

▶ Total Hilbert space is $\mathfrak{H} = \mathbb{C}^D \otimes \mathcal{F}$

Generalized Spin-Boson Models: The Hamiltonian

Hamiltonians from the physics literature look like this:

$$H^{\mathsf{bare}} = K \otimes I + I \otimes \mathrm{d}\Gamma(\omega) + \sum_{j=1}^{N} B_{j} \otimes a^{*}(f_{j}) + \sum_{j=1}^{N} B_{j}^{*} \otimes a(f_{j}) \ .$$

$$K \in \mathbb{C}^{D \times D} \text{ symmetric} = A^{*} = A$$

- $K \in \mathbb{C}^{D \times D}$. symmetric
- $\omega \in L^2_{loc}(\mathbb{R}^d;\mathbb{R}_+)$ is the dispersion relation, with second quantization
- ▶ $N \in \mathbb{N}$ is the number of interacting spins with $B_i \in \mathbb{C}^{D \times D}$

Generalized Spin-Boson Models: The Hamiltonian

Hamiltonians from the physics literature look like this:

$$H^{\mathsf{bare}} = K \otimes I + I \otimes \mathrm{d}\Gamma(\omega) + \sum_{j=1}^{N} B_{j} \otimes a^{*}(f_{j}) + \sum_{j=1}^{N} B_{j}^{*} \otimes a(f_{j}) \ .$$

$$E \in \mathbb{C}^{D \times D} \text{ symmetric} = A^{*} = A$$

- $K \in \mathbb{C}^{D \times D}$, symmetric
- $\omega \in L^2_{loc}(\mathbb{R}^d;\mathbb{R}_+)$ is the dispersion relation, with second quantization $\left(\mathbf{d}\Gamma(\omega)\psi\right)^{(n)}(k_1,\ldots,k_n) = \sum_{\ell=1}^n \omega(k_\ell)\psi^{(n)}(k_1,\ldots,k_n) .$ Typical examples: $\omega(k) = |k|^2 + m$ or $\omega(k) = |k|$
- ▶ $N \in \mathbb{N}$ is the number of interacting spins with $B_i \in \mathbb{C}^{D \times D}$

Generalized Spin-Boson Models: The Hamiltonian

Hamiltonians from the physics literature look like this:

$$H^{\mathsf{bare}} = K \otimes I + I \otimes \mathrm{d}\Gamma(\omega) + \sum_{j=1}^{N} B_{j} \otimes a^{*}(f_{j}) + \sum_{j=1}^{N} B_{j}^{*} \otimes a(f_{j}) \ .$$

$$E \in \mathbb{C}^{D \times D} \text{ symmetric} = A^{*} = A$$

- $K \in \mathbb{C}^{D \times D}$, symmetric
- $\omega \in L^2_{loc}(\mathbb{R}^d;\mathbb{R}_+)$ is the dispersion relation, with second quantization $\left(\mathbf{d}\Gamma(\omega)\psi\right)^{(n)}(k_1,\ldots,k_n) = \sum_{\ell=1}^n \omega(k_{\ell})\psi^{(n)}(k_1,\ldots,k_n) .$ Typical examples: $\omega(k) = |k|^2 + m$ or $\omega(k) = |k|$
- $N \in \mathbb{N}$ is the number of interacting spins with $B_i \in \mathbb{C}^{D \times D}$
- \bullet $a^*(f_i)$, $a(f_i)$ are creation/annihilation operators with $f_i \in L^1_{loc}(\mathbb{R}^d)$ CCR: $[a(f), a^*(g)] = \langle f, g \rangle$, $[a(f), a(g)] = [a^*(f), a^*(g)] = 0$ for $f, g \in L^2(\mathbb{R}^d)$
- ► Challenge: "non-perturbative renormalization", i.e., interpreting H^{bare} as self-adjoint operator $H:\mathfrak{H} \supseteq \mathrm{dom}(H) \to \mathfrak{H}$

UV Divergences

▶ Physically interesting: $f_j(k) = |k|^{-1/2}$ or $f_j(k) = 1$, so $f_j \notin L^2$. (At $|k| \to \infty$, the decay would have to be faster than $|k|^{-d/2}$.)



▶ A is OK for $\psi \in \mathcal{F}$ with fast decay

$$(a(f_j)\psi)^{(n)}(k_1,\ldots,k_n) = \sqrt{n+1} \int \overline{f_j(k)} \psi^{(n+1)}(k_1,\ldots,k_n,k) dk$$

• A^* is problematic for any $\psi \in \mathcal{F}$

$$(a^*(f_j)\psi)^{(n+1)} = \sqrt{n+1}f_j \otimes_{\mathbf{S}} \psi^{(n)}$$

$$\Rightarrow \|(a^*(f_j)\psi)^{(n+1)}\|_{L^2} = \sqrt{n+1}\underbrace{\|f_j\|_{L^2}}_{-\infty} \|\psi^{(n)}\|_{L^2} = \infty.$$

So on $\Psi = v \otimes \psi \in \mathfrak{H}$ we have

$$A^*\Psi = \sum_{j} (B_j v) \otimes (a^*(f_j)\psi) \notin \mathfrak{H}$$

UV Divergences

▶ Physically interesting: $f_j(k) = |k|^{-1/2}$ or $f_j(k) = 1$, so $f_j \notin L^2$. (At $|k| \to \infty$, the decay would have to be faster than $|k|^{-d/2}$.)

▶ A is OK for $\psi \in \mathcal{F}$ with fast decay:

$$(a(f_j)\psi)^{(n)}(k_1,\ldots,k_n) = \sqrt{n+1}\int \overline{f_j(k)}\psi^{(n+1)}(k_1,\ldots,k_n,k)dk$$
.

• A^* is problematic for any $\psi \in \mathcal{F}$:

$$(a^*(f_j)\psi)^{(n+1)} = \sqrt{n+1}f_j \otimes_{\mathbf{S}} \psi^{(n)}$$

$$\Rightarrow \|(a^*(f_j)\psi)^{(n+1)}\|_{L^2} = \sqrt{n+1}\underbrace{\|f_j\|_{L^2}}_{=\infty} \|\psi^{(n)}\|_{L^2} = \infty.$$

So on $\Psi = v \otimes \psi \in \mathfrak{H}$ we have

$$A^*\Psi = \sum_{j} (B_j v) \otimes (a^*(f_j)\psi) \notin \mathfrak{H}.$$

▶ Way out: **Hilbert space riggings**. Assume $\omega(k) \ge m > 0$. For $s \in [0, \infty)$, we set

$$\mathcal{H}_s := \operatorname{dom}(\omega^{s/2}) = \{ f \in L^2(\mathbb{R}^d) : \omega^{s/2} f \in L^2(\mathbb{R}^d) \} .$$

This is a Hilbert space with $\|f\|_s:=\|\omega^{s/2}f\|_{L^2}$. (so $\mathcal{H}:=\mathcal{H}_0=L^2$)

▶ Dual space is $\mathcal{H}_{-s} := \mathcal{H}'_s$ with distribution pairing

$$\langle f, g \rangle = \langle \omega^{s/2} f, \omega^{-s/2} g \rangle_{L^2}.$$

So . . . $\subset \mathcal{H}_2 \subset \mathcal{H}_1 \subset \mathcal{H} \subset \mathcal{H}_{-1} \subset \mathcal{H}_{-2} \subset .$. .

- Similarly, one can define $\mathfrak{H}_s \subset \mathfrak{H} \subset \mathfrak{H}_{-s}$ with $\|\Psi\|_{\mathfrak{H}_s} := \|(\mathrm{d}\Gamma(\omega) + 1)^{s/2}\Psi\|_{\mathfrak{H}}$. So $\mathrm{dom}(\mathrm{d}\Gamma(\omega)) = \mathfrak{H}_2$
- ▶ So, $d\Gamma(\omega) \in \mathcal{B}(\mathfrak{H}_2, \mathfrak{H})$, and further, for $f_j \in \mathcal{H}_{-s}$ one can show $A^* \in \mathcal{B}(\mathfrak{H}, \mathfrak{H}_{-s})$ and $A \in \mathcal{B}(\mathfrak{H}_s, \mathfrak{H})$. \Rightarrow Then, at least, $H^{\text{bare}} \in \mathcal{B}(\mathfrak{H}_s, \mathfrak{H}_{-s})$ is well-defined.

▶ Way out: **Hilbert space riggings**. Assume $\omega(k) \ge m > 0$. For $s \in [0, \infty)$, we set

$$\mathcal{H}_s := \operatorname{dom}(\boldsymbol{\omega}^{s/2}) = \{ f \in L^2(\mathbb{R}^d) : \boldsymbol{\omega}^{s/2} f \in L^2(\mathbb{R}^d) \} .$$

This is a Hilbert space with $\|f\|_s:=\|\omega^{s/2}f\|_{L^2}$. (so $\mathcal{H}:=\mathcal{H}_0=L^2$)

▶ Dual space is $\mathcal{H}_{-s} := \mathcal{H}'_s$ with distribution pairing

$$\langle f, g \rangle = \langle \omega^{s/2} f, \omega^{-s/2} g \rangle_{L^2}.$$

So ... $\subset \mathcal{H}_2 \subset \mathcal{H}_1 \subset \mathcal{H} \subset \mathcal{H}_{-1} \subset \mathcal{H}_{-2} \subset ...$

- Similarly, one can define $\mathfrak{H}_s \subset \mathfrak{H} \subset \mathfrak{H}_{-s}$ with $\|\Psi\|_{\mathfrak{H}_s} := \|(\mathrm{d}\Gamma(\omega) + 1)^{s/2}\Psi\|_{\mathfrak{H}}$. So $\mathrm{dom}(\mathrm{d}\Gamma(\omega)) = \mathfrak{H}_2$.
- ▶ So, $d\Gamma(\omega) \in \mathcal{B}(\mathfrak{H}_2, \mathfrak{H})$, and further, for $f_j \in \mathcal{H}_{-s}$ one can show $A^* \in \mathcal{B}(\mathfrak{H}, \mathfrak{H}_{-s})$ and $A \in \mathcal{B}(\mathfrak{H}_s, \mathfrak{H})$. \Rightarrow Then, at least, $H^{\text{bare}} \in \mathcal{B}(\mathfrak{H}_s, \mathfrak{H}_{-s})$ is well-defined.

- ▶ Q: Can we turn H^{bare} into self-adjoint $H:\mathrm{dom}(H)\to\mathfrak{H}$? We distinguish 4 cases: \mathcal{H}_{-2} \mathcal{H}_{-1} \mathcal{H} \mathcal{H}_{1} \mathcal{H}_{1} \mathcal{H}_{2}
- ▶ Case 0: $f_j \in \mathcal{H}_0$ is almost trivial. $H: \mathfrak{H}_2 \to \mathfrak{H}_0$ is self-adjoint by Kato–Rellich theorem on $\mathrm{dom}(H) = \mathfrak{H}_2$. Key estimates: $\|a(f)\psi\| \leq \left\|\frac{f}{\omega^{1/2}}\right\| \|\mathrm{d}\Gamma(\omega)^{1/2}\psi\|$ $\|a^*(f)\psi\|^2 = \|a(f)\psi\|^2 + \|f\|^2 \|\psi\|^2$
- ▶ Case 1: $f_j \in \mathcal{H}_{-1} \backslash \mathcal{H}_0$ is still easy. H is self-adjoint by KLMN theorem, but we lose information on dom(H).
- ▶ Case 2: $f_i \in \mathcal{H}_{-2} \backslash \mathcal{H}_{-1}$ is not so easy.
- ▶ Case 3: $f_j \notin \mathcal{H}_{-2}$ is really hard.

Main Results: Case 1

- ▶ First result; application of abstract theorem by [Posilicano 2020].
- Assumptions:
 - (i) B_j is normal, i.e., $B_i^* B_j = B_j B_i^*$,
 - (ii) $[B_j, B_{j'}] = 0$, $\forall j, j' = 1, ..., N$, and
 - (iii) $\bigcap_{j=1}^{N} \text{Ker}(B_j) = \{0\}.$
 - (iv) f_j are \mathcal{H} -independent, i.e., $\sum_j c_j f_j \in \mathcal{H}$ implies $c_j = 0 \ \forall j$.

Theorem (L., Lonigro 2023)

Let $\omega \geqslant m > 0$, $f_j \in \mathcal{H}_{-1} \backslash \mathcal{H}_0$ and (i)–(iv) hold. Then H is **self-adjoint** on

$$\operatorname{dom}(H) = \left\{ \Psi \in \mathfrak{H} : \left(1 + \left(\frac{K}{H} + \operatorname{d}\Gamma(\omega) - z_0 \right)^{-1} A^* \right) \Psi \in \mathfrak{H}_2 \right\} ,$$

for any $z_0 \in \mathbb{R} \cap \rho(K + d\Gamma(\omega))$. Further, there exist $(f_{j,n})_{n \in \mathbb{N}} \subset \mathcal{H}$ with $||f_j - f_{j,n}||_{\mathcal{H}_{-1}} \to 0$ such that in **norm resolvent sense**:

$$H_n := \left(\frac{K + d\Gamma(\omega)}{K} + \sum_{j=1}^{N} (B_j a^*(f_{j,n}) + B_j^* a(f_{j,n})) \right) \xrightarrow{n \to \infty} H.$$

Main Results: Case 2

- Second result uses "completion of the square" argument.
- We assume only

(ii)
$$[B_j, B_{j'}] = 0, \forall j, j' = 1, \dots, N$$

Theorem (Alvarez, L., Lonigro, Martín, 2025)

Let $\omega \geqslant m > 0$, $f_j \in \mathcal{H}_{-2}$ and (ii) hold. Then, we construct a densely defined H, which is bounded below. Thus, it allows for a **self-adjoint** Friedrichs extension. also called H.

Further, for any $(f_{j,n})_{n\in\mathbb{N}}\subset\mathcal{H}$ with $||f_j-f_{j,n}||_{\mathcal{H}_{-2}}\to 0$, we have

$$H_n := \left(K + d\Gamma(\omega) + \sum_{j=1}^N (B_j a^*(f_{j,n}) + B_j^* a(f_{j,n})) - E_n \right) \xrightarrow{n \to \infty} H$$

in norm resolvent sense, with self-energy counterterm

$$\underline{E}_n := \sum_{j,j'=1}^N B_j^* B_{j'} \int_{\frac{\omega(k)}{\omega(k)}} \overline{f_{j',n}(k)} \, \mathrm{d}k$$

Applications

▶ Van Hove model: N = 1, D = 1,

$$H^{\mathsf{bare}} = \mathbf{d}\Gamma(\omega) + a^*(f) + a(f)$$

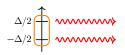
▶ Standard spin-boson model: N = 1, D = 2, with $\Delta > 0$

Rotating wave approximation (RWA) spin-boson model:

$$K = \frac{\Delta}{2}\sigma_z \;, \quad B = \sigma_- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 Here, $BB^* \neq B^*B$, but $B^2 = 0$

Dephasing spin-boson model:

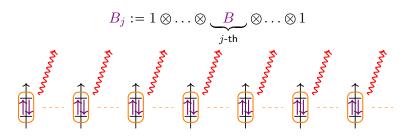
$$K = \frac{\Delta}{2}\sigma_z \;, \quad B = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (= direct sum of 2 van Hove models, up to constants)



 $\sim\sim\sim\sim\sim$

Applications

▶ Multi-spin-boson models: $N \in \mathbb{N}$, $D = 2^N$, fix some $B \in \mathbb{C}^{2 \times 2}$,



- ▶ In particular, here $[B_j, B_{j'}] = 0 \ \forall j \neq j'$
- ▶ Then, $K \in \mathbb{C}^{2^N}$ models interactions between the spins.

Literature

- Case 0 is thoroughly studied [Bach, Ballesteros, Bruneau, Dereziński, Gérard, Hasler, Herbst, Hinrichs, Jakšić, Könenberg, Menrath, Siebert, ...]
- Cases 1 and 2 for similar models via cutoff-renormalization are well-studied [Nelson 1964], [Eckmann 1970], [Fröhlich 1973], [Sloan 1973]
- Cases 1 and 2 for similar models without cutoffs: [Lampart, Henheik, Posilicano, Schmidt, Teufel, Tumulka] via "interior-boundary conditions" (IBC)
- ► Case 3: **van Hove model** is thoroughly studied [Dereziński 2003], [Fewster, Rejzner 2020], [Falconi, Hinrichs 2025]. **Standard spin–boson model** gets trivial, i.e., $H_n \to \mathrm{d}\Gamma(\omega)$ [Dam, Møller 2020]. Beyond that, very few works on similar models exist, e.g. [Gross 1973].
- ▶ **GSB Cases 1 and 2**: [Lonigro 2021-23] constructs H for specific B_j
- ▶ **GSB Case 2**: [Hinrichs, Lampart, Martín 2025] normal B_i and $B_i^2 = 0$
- ▶ **GSB Case 3**: [Falconi, Hinrichs, Martín 2025] N = 1, normal B

Proof Ideas (Case 2)

First note that $\|K\| < \infty$, so adding/subtracting K does not affect self-adjointness. Formally, we write:

$$\begin{split} H^{\mathsf{bare}} - K \\ &= \mathsf{d}\Gamma(\omega) + \sum_{j} B_{j} a^{*}(f_{j}) + \sum_{j} B_{j}^{*} a(f_{j}) \\ &= \int \left(\omega(k) a_{k}^{*} a_{k} + \sum_{j} B_{j} f_{j}(k) a_{k}^{*} + \sum_{j} B_{j}^{*} \overline{f_{j}(k)} a_{k}\right) \mathsf{d}k \\ &= \int \omega(k) \left(a_{k} + \sum_{j} B_{j} \frac{f_{j}(k)}{\omega(k)}\right)^{*} \left(a_{k} + \sum_{j} B_{j} \frac{f_{j}(k)}{\omega(k)}\right) \mathsf{d}k - \underbrace{\sum_{j,j'} B_{j}^{*} B_{j'} \int \overline{f_{j}(k)} f_{j'}(k)}_{\omega(k)} \mathsf{d}k}_{=:\hat{a}_{k}} \\ &\Rightarrow H^{\mathsf{bare}} - E_{\infty} = K + \int \omega(k) \hat{a}_{k}^{*} \hat{a}_{k} \mathsf{d}k \end{split}$$

- Note: \hat{a}_k^*, \hat{a}_k generally do not satisfy the CCR.
- ▶ However, if $B_j B_j^* = B_j^* B_j$, then \hat{a}_k^*, \hat{a}_k satisfy the CCR.

▶ We will define the r.h.s. as the renormalized Hamiltonian *H*:

$$H^{\mathsf{bare}} - \underline{E}_{\infty} = \underline{K} + \int \omega(\underline{k}) \hat{a}_{k}^{*} \hat{a}_{k} dk =: H$$

- ▶ Step 1: Construct dressing trafo $T = \exp\left(-\sum_{j=1}^N B_j a^*(\frac{f_j}{\omega})\right)$, such that for any $v \in \mathbb{C}^d$ we have $\hat{a}_k T(v \otimes \Omega) = 0$.
- ▶ Step 2: Fix suitable ONB $(e_{\ell})_{\ell \in \mathbb{N}} \subset \mathcal{H}_2$, show $||H\psi|| < \infty$ for

$$\psi \in \mathcal{D} := \operatorname{Span}\{a^*(e_{\ell_1}) \dots a^*(e_{\ell_n}) T(v \otimes \Omega)\} \subset \mathfrak{H}$$

- ▶ Step 3: Show that *D* is dense.
- ▶ Obviously, $\int \omega(k) \hat{a}_k^* \hat{a}_k dk \ge 0$, so $H \ge -\|K\|$ is self-adjoint by Friedrichs' extension.

- Proof of norm resolvent convergence: For $z \in \mathbb{C}$, $\operatorname{Re}(z)$ small, resolvents are $R(z) := (H-z)^{-1}$ and $R_n(z) := (H_n-z)^{-1}$
- ▶ Compute via resolvent identity with $\hat{a}_n(g) := a(g) + \sum_j B_j \langle g, \frac{f_{j,n}}{\omega} \rangle$:

$$\|R_{n}(z) - R(z)\|$$

$$\leq \sum_{j=1}^{N} \|R_{n}(z) (B_{j}^{*} \hat{a}(f_{j} - f_{j,n}) + \hat{a}_{n}^{*}(f_{j} - f_{j,n})B_{j})R(z)\|$$

$$\leq C \sum_{j=1}^{N} \|B_{j}\| (\|\hat{a}(f_{j} - f_{j,n})R(z)\| + \|R_{n}(z)\hat{a}_{n}^{*}(f_{j} - f_{j,n})\|)$$

► Conclude with $\|\hat{a}(f_j - f_{j,n})R(z)\| \leq C \|\frac{f_j - f_{j,n}}{\omega}\| \xrightarrow{n \to \infty} 0$, and likewise $\|R_n(z)\hat{a}_n^*(f_j - f_{j,n})\| \xrightarrow{n \to \infty} 0$

<u>Warning</u>: In the proof, $R_n(z)(H-H_n)\psi$ with $\psi\in\mathrm{dom}(H)$ appears. But typically $\mathrm{dom}(H)\cap\mathrm{dom}(H_n)=\{0\}$. Solution: Use Hilbert space riggings to extend $H_n:\mathrm{dom}(H_n)\to\mathfrak{H}$ to $H_n:\mathfrak{H}\to\mathfrak{H}_n$. Then, $H_n(z):\mathfrak{H}_n\to\mathfrak{H}$.

Remarks

$$H^{\mathsf{bare}} - \underline{E}_{\infty} = \underline{K} + \int \omega(k) \hat{a}_k^* \hat{a}_k dk =: H$$

- ▶ Generally, $\int \frac{|f_j|^2}{\omega} = \infty$ so E_∞ contains divergent integral. $\Rightarrow E_\infty$ and H^{bare} are not operators on $\mathfrak H$
- lacktriangle Heuristically, H^{bare} was "too large by an infinite term", which we removed.
- ▶ Still, we could rigorously define H^{bare} and E_{∞} via Fock space extensions as in [L. 2022-25].
- ▶ In case $B_j B_j^* = B_j^* B_j$, a unitary Weyl trafo $W: \mathfrak{H} \to \mathfrak{H}$ exists with

$$W^* \hat{a}_k W = a_k \quad \Rightarrow \quad W^* H W = W^* K W + d\Gamma(\omega)$$

So W^*HW is a bounded perturbation of a trivial model.

Outlook

- ▶ We expect IBC technique as in [Lampart, Schmidt] to work in Case 2 without $[B_j, B_{j'}] = 0$ \rightarrow future research
- Resolvent expansion technique by [Alvarez, Møller 2022-2024] should also work in Case 2 without $[B_j, B_{j'}] = 0 \rightarrow$ future research
- ▶ Case 3 without $B_j B_j^* = B_j^* B_j$ will require finding suitable dressing transformation. This may be very hard \rightarrow future research
- ▶ Case 3 triviality argument of [Dam, Møller 2020] relies on $B_j B_j^* = B_j^* B_j$. In general, we do not expect triviality.

Thank you for your attention!

Outlook

- ▶ We expect IBC technique as in [Lampart, Schmidt] to work in Case 2 without $[B_j, B_{j'}] = 0$ \rightarrow future research
- Resolvent expansion technique by [Alvarez, Møller 2022-2024] should also work in Case 2 without $[B_j, B_{j'}] = 0 \rightarrow$ future research
- ▶ Case 3 without $B_j B_j^* = B_j^* B_j$ will require finding suitable dressing transformation. This may be very hard \rightarrow future research
- ▶ Case 3 triviality argument of [Dam, Møller 2020] relies on $B_j B_j^* = B_j^* B_j$. In general, we do not expect triviality.

Thank you for your attention!