

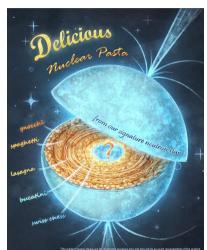
The gnocchi phase in nuclear pasta

Mathieu LEWIN

(CNRS & Paris-Dauphine)

joint work with Rupert L. Frank & Robert Seiringer

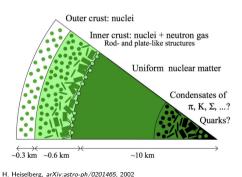
Cergy, Sept. 2025



https://www.artstation.com/artwork/Ye54Dd

Nuclear pasta

- postulated to exist within the crust of neutron stars
- believed to be the strongest material in the universe
- nuclear attraction and Coulomb repulsion forces comparable magnitude
 → neutrons+protons form a variety of complex geometric structures (delocalized electrons)



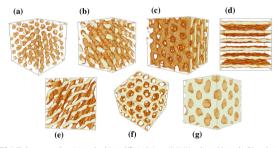


FIG. 3 Nuclear pasta configurations produced in our MD simulations with 51,200 nucleons: (a) gnocchi, (b) spaghetti, (c) waffles, (d) lasagna, (e) defects, (f) antispaghetti, and (g) antignocchi (Horowitz et al., 2015; Schneider et al., 2014, 2013).

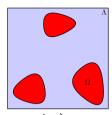
H. Helselberg, arxiv:astro-pn/0201405, 2002

M. E. Caplan and C. J. Horowitz, Rev. Mod. Phys. 2017

Liquid drop model

For $0 < \rho < 1$ and $\Omega \subset \Lambda \subset \mathbb{R}^3$ with $|\Omega| = \rho |\Lambda|$

$$\mathcal{E}_{\Lambda}[\rho,\Omega] := \mathsf{Per}(\Omega) + \frac{1}{2} \iint_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{(\mathbb{1}_{\Omega} - \rho \mathbb{1}_{\Lambda})(x)(\mathbb{1}_{\Omega} - \rho \mathbb{1}_{\Lambda})(y)}{|x - y|} \, \mathsf{d}x \, \mathsf{d}y$$



- ullet uniform liquid of protons+neutrons in Ω , with $\operatorname{Per}(\Omega)=\operatorname{surface}$ area (\sim nuclear attraction)
- ullet uniform gas of electrons with (relative) density ho
- Gamow (1929), Bohr-Wheeler (1939), Ohta-Kawasaki (1986) for diblock copolymers

$$E_{\Lambda}(\rho) := \min_{\substack{\Omega \subset \Lambda \\ |\Omega| = \rho|\Lambda|}} \mathcal{E}_{\Lambda}[\rho, \Omega]$$

Conjecture (Ravenhall-Pethick-Wilson '83, Hashimoto-Seki-Yamada '84)

In the limit $\Lambda \nearrow \mathbb{R}^3$ with $\rho = |\Omega|/|\Lambda|$ fixed, previous pasta phases for Ω when ρ is varied in [0,1].

[symmetry $\Omega \longleftrightarrow \Lambda \setminus \Omega$ corresponding to $\rho \longleftrightarrow 1-\rho$]

Main results

Theorem (Thermodynamic limit)

Let Λ_n be a sequence of smooth sets, so that $B(0, \ell_n/C) \subset \Lambda_n \subset B(0, \ell_n)$ for some $\ell_n \to \infty$. The following limit exists and does not depend on the sequence Λ_n :

$$e(\rho) := \lim_{n \to \infty} \frac{E_{\Lambda_n}(\rho)}{|\Lambda_n|}$$

- Adaptation of Lieb-Lebowitz-Narnhofer (1972–75)
- Periodic boundary conditions: Alberti-Choksi-Otto (2009). Cubes Λ_n : Emmert-Frank-König (2020)

Theorem (Low density regime)

$$e(\rho) = \mu_* \rho + m_*^{\frac{2}{3}} e_{Jel} \rho^{\frac{4}{3}} + o(\rho^{\frac{4}{3}})_{\rho \to 0}$$

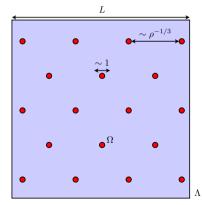
where $\mu_*, m_* =$ energy, mass of an isolated nuclear droplet, and $e_{Jel} =$ Jellium energy.

- Choksi-Peletier (2010), Knüpfer-Muratov-Novaga (2016), Emmert-Frank-König (2020) when $\rho_n \to 0$
- ullet shape of Ω_n ? many unsolved conjectures for $\mu_*, m_*, e_{\mathsf{Jel}}!$

Gnocchi phase

$$e(\rho) = \underbrace{\mu_* \rho}_{\text{shape}} + \underbrace{m_*^{\frac{2}{3}} \, e_{\text{Jel}} \, \rho^{\frac{4}{3}}}_{\text{arangement of gnocchis}} + o(\rho^{\frac{4}{3}})_{\rho \to 0}$$

Gnocchi phase: $\Omega \approx$ union of infinitely many sets of size 1 placed at distance $\sim \rho^{-1/3}$



Two poorly understood famous minimization problems:

• gnocchis should be identical balls of radius $R_* = (15/8\pi)^{1/3}$, conjectured optimizers of isolated drop problem,

$$m_* \stackrel{?}{=} |B_{R_*}|, \qquad \mu_* \stackrel{?}{=} Per(B_{R_*}) + \frac{1}{2} \iint_{B_{R_*} \times B_{R_*}} \frac{dx \, dy}{|x - y|}$$

• should be placed on Body-Centered-Cubic lattice of side length $\sim \rho^{-1/3}$, conjectured minimizer of Jellium problem

$$e_{\mathsf{Jel}} \stackrel{?}{=} \zeta_{\mathsf{BCC}}(1) \simeq -1.44$$
 (Epstein zeta function)

Mathieu LEWIN (CNRS / Paris-Dauphine)

Nuclear pasta

Isolated droplets

$$\mu_* := \min_{\substack{\Omega \subset \mathbb{R}^3 \ |\Omega| > 0}} \frac{I[\Omega]}{|\Omega|}, \qquad I[\Omega] := \mathsf{Per}(\Omega) + \frac{1}{2} \iint_{\Omega^2} \frac{\mathsf{d} x \, \mathsf{d} y}{|x - y|}$$

- minimizers exist and are bounded, with a volume $|\Omega_*| \in [m_{**}, m_*]$ with $5/2 \le m_{**} \le m_* \le 8$
- conjectured to be balls of radius $R_* = (15/8\pi)^{1/3}$, in which case $m_* = 5/2$

Knüpfer-Muratov 2013, Frank-Lieb 2015, Knüpfer-Muratov-Novaga 2016, Frank-Killip-Nam 2016

Theorem (Minimizing sequences)

For any sequence $\{\Omega_n\}$ such that $|\Omega_n|^{-1}I[\Omega_n] \to \mu_*$ with $|\Omega_n| \to m > 0$, we can find minimizers $\Omega_*^{(1)},...,\Omega_*^{(K)}$ and sequences $a_n^{(j)} \in \mathbb{R}^3$ with $|a_n^{(j)} - a_n^{(k)}| \to_{n \to \infty} \infty$ such that, up to a subsequence,

- $(\Omega_n a_n^{(j)}) \cap B(0,R) \to \Omega_*^{(j)}$ (in L^1 for the corresponding characteristic fns);
- $\bullet \ \left|\Omega_n \setminus \bigcup_{j=1}^K B(a_n^{(j)},R)\right| + \mathsf{Per}\Big(\Omega_n \setminus \bigcup_{j=1}^K B(a_n^{(j)},R)\Big) \to 0 \ \textit{and hence} \ m = \textstyle \sum_{j=1}^K |\Omega_*^{(j)}|;$
- $\bullet \ I[\Omega_n] \ge \mu_* |\Omega_n| + \sum_{1 \le i < k \le K} \frac{|\Omega_*^{(j)}| \, |\Omega_*^{(k)}| + o(1)}{|a_n^{(j)} a_n^{(k)}|}$

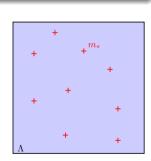
Jellium model: Wigner crystal

$$e_{\mathsf{Jel}}(m_*, \rho) := \lim_{\Lambda \nearrow \mathbb{R}^3} \min_{\substack{x_1, \dots, x_N \\ Nm_* = \rho |\Lambda|}} |\Lambda|^{-1} \left(\sum_{1 \le j < k \le N} \frac{m_*^2}{|x_j - x_k|} - m_* \rho \sum_{j=1}^N \int_{\Lambda} \frac{\mathsf{d}y}{|x_j - y|} + \rho^2 \iint_{\Lambda^2} \frac{\mathsf{d}x \, \mathsf{d}y}{|x - y|} \right)$$

- ullet N point particles of charge m_* in a uniform background of charge ho
- $e_{\mathsf{Jel}}(m_*, \rho) = m_*^{\frac{2}{3}} \rho^{\frac{4}{3}} \underbrace{e_{\mathsf{Jel}}(1, 1)}_{=:e_{\mathsf{Jel}}}$
- existence of thermodynamic limit by Lieb-Lebowitz-Narnhofer 1973–75
- also called one-component plasma or plum pudding model
- Crystallization conjecture (Wigner, 1934): particles placed on BCC lattice, in which case one finds

$$\underbrace{\mathsf{e}_{\mathsf{Jel}}}_{z\in\mathsf{BCC}\setminus\{0\}} \frac{1}{|z|^s} \bigg|_{\Re(s)>3 \ \leadsto \ s=1} \quad (\mathsf{Epstein} \ \mathsf{zeta} \ \mathsf{function})$$

• crystallization only known in dimensions $d \in \{1, 8, 24\}$ Kupz 1974 Ventevozel 1978 Cohn-Kumar-Miller-Radchenko-Viazovska 2022 Petrache-Serfaty 2020 L 2022



7 / 11

Mathieu LEWIN (CNRS / Paris-Dauphine) Nuclear pasta

Infinite Jellium ground states

Definition (Infinite ground states for the Jellium problem, $m_* = \rho = 1$)

 $X = \{x_i\}$ with $|x_i - x_k| \ge \eta > 0$ and there exists a $V : \mathbb{R}^3 \to \mathbb{R}$ such that $-\Delta V = 4\pi (\sum_i \delta_{x_i} - 1)$ with $V(x) - \sum_{i} \frac{\mathbb{1}(|x-x_{i}| \leq \delta/2)}{|x-x_{i}|} \in L^{\infty}(\mathbb{R}^{3})$ (or less), such that $\forall R > 0$, $X \cap B_{R}$ minimizes the inside energy

$$Y\mapsto \sum_{j< k}rac{1}{|y_j-y_k|}-\sum_j\int_{B_R}rac{\mathsf{d} y}{|y_j-y|}+\sum_jV_{B_R^c}(y_j)$$

- (canonical) among all $Y \subset B_R$ with $\#Y = \#(X \cap B_R)$
- (grand-canonical) among all $Y \subset B_R$

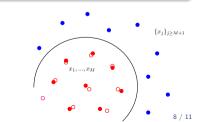
where $V_{B_p^c}(y) := V(y) - \sum_{x \in B_p} \frac{1}{|y-x|} + \int_{B_p} \frac{dz}{|y-z|}$ is the potential generated from the outside.

≈ Dobrushin-Lanford-Ruelle, Sinai '82, Radin '84, Radin-Bellissard-Schlosman '10, L. '22

Theorem (Existence – L. 2022)

Infinite grand-canonical Jellium ground states exist.

- Conjecture 1: BCC lattice is an infinite ground state



Main steps for proof of low density expansion I

▶ Step 1: reducing to sets of size $\geq \rho^{-1/3}$

Theorem (Graf-Schenker inequality '94)

Let $\{\Delta_j\}$ be the tiling of \mathbb{R}^3 obtained from $\ell\mathbb{Z}^3 + (-\ell/2, \ell/2)^3$ by splitting each cube into 24 congruent tetrahedra. Then for any $f \in L^1 \cap L^{6/5}(\mathbb{R}^3)$ we have

$$\iint_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{f(x)f(y)}{|x-y|} dx dy \ge \frac{1}{\ell^3} \int_{[0,\ell]^3 \times SO(3)} \left(\sum_j \iint_{g \cdot \Delta_j \times g \cdot \Delta_j} \frac{f(x)f(y)}{|x-y|} dx dy \right) dg$$

In particular there exists a translation+rotation of the tiling g such that f(x)f(y) = f(x)f(y)

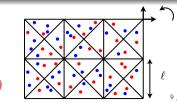
$$\iint_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{f(x)f(y)}{|x-y|} dx dy \ge \sum_j \iint_{g \cdot \Delta_j \times g \cdot \Delta_j} \frac{f(x)f(y)}{|x-y|} dx dy$$

Hainzl-L.-Solovej 2009

- $\frac{1-|\Delta|^{-1}\mathbb{1}_{\Delta}*\mathbb{1}_{-\Delta}(x)}{|x|}$ has positive Fourier transform
- similar version for point particles

Mathieu LEWIN (CNRS / Paris-Dauphine)

• \Rightarrow reduces the liquid drop to tetrahedra of size $A\rho^{-1/3}$ with an error $\rho^{4/3}/A$ coming from the localization of the perimeter (grand-canonical)



Main steps for proof of low density expansion II

- ▶ Step 2: study of the liquid drop in a tetrahedron of size $A\rho^{-1/3}$ (grand-canonical)
 - background has a finite charge $\rho(A\rho^{-\frac{1}{3}})^3|\Delta|=A^3|\Delta|$ \Longrightarrow expect finitely many gnocchis
 - proof that Ω has volume $|\Omega| \leq 8 + 16\pi A^3 \text{diam}(\Delta)^3$ following Frank-Killip-Nam '16
 - ullet theorem on minimizing sequences $\Longrightarrow \Omega$ essentially made of finitely many minimizers for the isolated droplet model
 - ullet repulsion between the droplets \Longrightarrow Jellium model for finitely many particles in $A\Delta$
 - largest possible mass m_* by concavity of the Jellium energy w.r.t. m

► Step 3: thermodynamic limit for Jellium

- grand-canonical ≡ canonical
- gives the lower bound

► Step 4: Upper bound

- place isolated droplets on an approximate (periodic) minimizer for the Jellium problem
- use that periodic BC lead to same Jellium energy e_{Jel}

Conclusion

Summary:

- studied a continuous model for nuclear matter where competition between attractive geometric forces and Coulomb repulsion leads to phase transitions with a lot of geometry
- in the low density regime $\rho \to 0$, Ω should be close to the union of balls placed at distance $\rho^{-1/3}$ on a BCC lattice, in the uniform sea of electrons (gnocchi in tomato sauce)

Open problems:

- ullet better understand μ_* and e_{Jel}
- ullet $\Omega=$ union of minimizers of μ_* placed on an infinite ground state for e_{Jel} , whatever they are
- ullet phase transitions when ho is increased
- numerics