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Nuclear pasta

postulated to exist within the crust of neutron stars

believed to be the strongest material in the universe

nuclear attraction and Coulomb repulsion forces comparable magnitude
 neutrons+protons form a variety of complex geometric structures (delocalized electrons)

H. Heiselberg, arXiv:astro-ph/0201465, 2002 M. E. Caplan and C. J. Horowitz, Rev. Mod. Phys. 2017
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Liquid drop model

For 0 < ρ < 1 and Ω ⊂ Λ ⊂ R3 with |Ω| = ρ|Λ|

EΛ[ρ,Ω] := Per(Ω) +
1

2

�
R3×R3

(1Ω − ρ1Λ)(x)(1Ω − ρ1Λ)(y)

|x − y | dx dy

Λ

Ω

uniform liquid of protons+neutrons in Ω, with Per(Ω) = surface area (∼nuclear attraction)

uniform gas of electrons with (relative) density ρ

Gamow (1929), Bohr-Wheeler (1939), Ohta-Kawasaki (1986) for diblock copolymers

EΛ(ρ) := min
Ω⊂Λ
|Ω|=ρ|Λ|

EΛ[ρ,Ω]

Conjecture (Ravenhall-Pethick-Wilson ’83, Hashimoto-Seki-Yamada ’84)

In the limit Λ↗ R3 with ρ = |Ω|/|Λ| fixed, previous pasta phases for Ω when ρ is varied in [0, 1].

[symmetry Ω! Λ \ Ω corresponding to ρ! 1− ρ]
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Main results

Theorem (Thermodynamic limit)

Let Λn be a sequence of smooth sets, so that B(0, `n/C ) ⊂ Λn ⊂ B(0, `n) for some `n →∞. The
following limit exists and does not depend on the sequence Λn:

e(ρ) := lim
n→∞

EΛn(ρ)

|Λn|

Adaptation of Lieb-Lebowitz-Narnhofer (1972–75)

Periodic boundary conditions: Alberti-Choksi-Otto (2009). Cubes Λn: Emmert-Frank-König (2020)

Theorem (Low density regime)

e(ρ) = µ∗ ρ+ m
2
3∗ eJel ρ

4
3 + o(ρ

4
3 )ρ→0

where µ∗,m∗ = energy, mass of an isolated nuclear droplet, and eJel = Jellium energy.

Choksi-Peletier (2010), Knüpfer-Muratov-Novaga (2016), Emmert-Frank-König (2020) when ρn → 0

shape of Ωn? many unsolved conjectures for µ∗,m∗, eJel!
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Gnocchi phase

e(ρ) = µ∗ ρ︸︷︷︸+m
2
3∗ eJel ρ

4
3︸ ︷︷ ︸+o(ρ

4
3 )ρ→0

shape arangement of gnocchis

Gnocchi phase: Ω ≈ union of infinitely many sets of size 1 placed at distance ∼ ρ−1/3

Λ

∼ ρ−1/3

∼ 1

L

Ω

Two poorly understood famous minimization problems:

gnocchis should be identical balls of radius R∗ = (15/8π)1/3,
conjectured optimizers of isolated drop problem,

m∗
?
= |BR∗ |, µ∗

?
= Per(BR∗) +

1

2

�
BR∗×BR∗

dx dy

|x − y |

should be placed on Body-Centered-Cubic lattice of side length
∼ ρ−1/3, conjectured minimizer of Jellium problem

eJel
?
= ζBCC(1) ' −1.44 (Epstein zeta function)
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Isolated droplets

µ∗ := min
Ω⊂R3

|Ω|>0

I [Ω]

|Ω| , I [Ω] := Per(Ω) +
1

2

�
Ω2

dx dy

|x − y |

minimizers exist and are bounded, with a volume |Ω∗| ∈ [m∗∗,m∗] with 5/2 ≤ m∗∗ ≤ m∗ ≤ 8
conjectured to be balls of radius R∗ = (15/8π)1/3, in which case m∗ = 5/2

Knüpfer-Muratov 2013, Frank-Lieb 2015, Knüpfer-Muratov-Novaga 2016, Frank-Killip-Nam 2016

Theorem (Minimizing sequences)

For any sequence {Ωn} such that |Ωn|−1I [Ωn]→ µ∗ with |Ωn| → m > 0, we can find minimizers

Ω
(1)
∗ , ...,Ω

(K)
∗ and sequences a

(j)
n ∈ R3 with |a(j)

n − a
(k)
n | →n→∞ ∞ such that, up to a subsequence,

(Ωn − a
(j)
n ) ∩ B(0,R)→ Ω

(j)
∗ (in L1 for the corresponding characteristic fns);∣∣∣Ωn \

⋃K
j=1 B(a

(j)
n ,R)

∣∣∣+ Per
(

Ωn \
⋃K

j=1 B(a
(j)
n ,R)

)
→ 0 and hence m =

∑K
j=1 |Ω

(j)
∗ |;

I [Ωn] ≥ µ∗|Ωn|+
∑

1≤j<k≤K

|Ω(j)
∗ | |Ω(k)

∗ |+ o(1)

|a(j)
n − a

(k)
n |
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Jellium model: Wigner crystal

eJel(m∗, ρ) := lim
Λ↗R3

min
x1,...,xN

Nm∗=ρ|Λ|
|Λ|−1

 ∑
1≤j<k≤N

m2
∗

|xj − xk |
−m∗ρ

N∑
j=1

�
Λ

dy

|xj − y | + ρ2

�
Λ2

dx dy

|x − y |


N point particles of charge m∗ in a uniform background of charge ρ

eJel(m∗, ρ) = m
2
3∗ ρ

4
3 eJel(1, 1)︸ ︷︷ ︸

=:eJel

existence of thermodynamic limit by Lieb-Lebowitz-Narnhofer 1973–75

also called one-component plasma or plum pudding model

Crystallization conjecture (Wigner, 1934): particles placed on BCC
lattice, in which case one finds

eJel
?
= ζBCC(1) =

∑
z∈BCC\{0}

1

|z |s
∣∣∣∣
<(s)>3  s=1

(Epstein zeta function)

crystallization only known in dimensions d ∈ {1, 8, 24}

Λ

m∗

Kunz 1974, Ventevogel 1978, Cohn-Kumar-Miller-Radchenko-Viazovska 2022, Petrache–Serfaty 2020, L. 2022
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Infinite Jellium ground states

Definition (Infinite ground states for the Jellium problem, m∗ = ρ = 1)

X = {xj} with |xj − xk | ≥ η > 0 and there exists a V : R3 → R such that −∆V = 4π(
∑

j δxj − 1) with

V (x)−∑j
1(|x−xj |≤δ/2)
|x−xj | ∈ L∞(R3) (or less), such that ∀R > 0, X ∩ BR minimizes the inside energy

Y 7→
∑
j<k

1

|yj − yk |
−
∑
j

�
BR

dy

|yj − y | +
∑
j

VBc
R

(yj)

(canonical) among all Y ⊂ BR with #Y = #(X ∩ BR)

(grand-canonical) among all Y ⊂ BR

where VBc
R

(y) := V (y)−∑xj∈BR

1
|y−xj | +

�
BR

dz
|y−z| is the potential generated from the outside.

≈ Dobrushin-Lanford-Ruelle, Sinai ’82, Radin ’84, Radin-Bellissard-Schlosman ’10, L. ’22

Theorem (Existence – L. 2022)

Infinite grand-canonical Jellium ground states exist.

Conjecture 1: BCC lattice is an infinite ground state

Conjecture 2: liquid drop Ω ≈ ⋃j{ρ−
1
3 xj + Ω∗j }

x1, ..., xM

{xj}j≥M+1
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Main steps for proof of low density expansion I
I Step 1: reducing to sets of size & ρ−1/3

Theorem (Graf-Schenker inequality ’94)

Let {∆j} be the tiling of R3 obtained from `Z3 + (−`/2, `/2)3 by splitting each cube into 24 congruent
tetrahedra. Then for any f ∈ L1 ∩ L6/5(R3) we have

�
R3×R3

f (x)f (y)

|x − y | dx dy ≥ 1

`3

�
[0,`]3×SO(3)

∑
j

�
g ·∆j×g ·∆j

f (x)f (y)

|x − y | dx dy

 dg

In particular there exists a translation+rotation of the tiling g such that�
R3×R3

f (x)f (y)

|x − y | dx dy ≥
∑
j

�
g ·∆j×g ·∆j

f (x)f (y)

|x − y | dx dy

Hainzl-L.-Solovej 2009

1−|∆|−11∆∗1−∆(x)

|x| has positive Fourier transform

similar version for point particles

=⇒ reduces the liquid drop to tetrahedra of size Aρ−1/3 with an error
ρ4/3/A coming from the localization of the perimeter (grand-canonical)

ℓ
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Main steps for proof of low density expansion II

I Step 2: study of the liquid drop in a tetrahedron of size Aρ−1/3 (grand-canonical)

background has a finite charge ρ(Aρ−
1
3 )3|∆| = A3|∆| =⇒ expect finitely many gnocchis

proof that Ω has volume |Ω| ≤ 8 + 16πA3diam(∆)3 following Frank-Killip-Nam ’16

theorem on minimizing sequences =⇒ Ω essentially made of finitely many minimizers for the
isolated droplet model

repulsion between the droplets =⇒ Jellium model for finitely many particles in A∆

largest possible mass m∗ by concavity of the Jellium energy w.r.t. m

I Step 3: thermodynamic limit for Jellium

grand-canonical ≡ canonical

gives the lower bound

I Step 4: Upper bound

place isolated droplets on an approximate (periodic) minimizer for the Jellium problem

use that periodic BC lead to same Jellium energy eJel
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Conclusion

Summary:

studied a continuous model for nuclear matter where competition between attractive geometric
forces and Coulomb repulsion leads to phase transitions with a lot of geometry

in the low density regime ρ→ 0, Ω should be close to the union of balls placed at distance ρ−1/3

on a BCC lattice, in the uniform sea of electrons (gnocchi in tomato sauce)

Open problems:

better understand µ∗ and eJel

Ω = union of minimizers of µ∗ placed on an infinite ground state for eJel, whatever they are

phase transitions when ρ is increased

numerics
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