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Setup Limit theorems Large deviations Keep-Switch

Setup

Hilbert space H = Cd

Finite set A
Collection {Va}a∈A of matrices such that∑

a∈A
V ∗a Va = 1,

so {V ∗a Va}a∈A is a discrete POVM, and X 7→
∑

a∈A VaXV ∗a is a
quantum channel

Repeated measurements. In state |ψ⟩ the probability to obtain
a ∈ A is ∥Vaψ∥2.The new state of the system is then |Vaψ⟩

∥Vaψ∥

Examples:
Von Neumann (+ time evolution): Va = UPaV with U,V unitary

Ancilla: Va = (1⊗ ⟨a|)W (1⊗ |p⟩) with W unitary on H⊗Hp
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Setup Limit theorems Large deviations Keep-Switch

A = {1, 2, . . . , ℓ}.

|ψ0⟩

|V1ψ0⟩
∥V1ψ0∥

|V2ψ0⟩
∥V2ψ0∥

|Vaψ0⟩
∥Vaψ0∥

=: |ψ1⟩

|Vℓψ0⟩
∥Vℓψ0∥

...

...

1

2

a

ℓ

|V1ψ1⟩
∥V1ψ1∥

|Vbψ1⟩
∥Vaψ1∥

=
|VbVaψ0⟩
∥VbVaψ0∥

|Vℓψ1⟩
∥Vℓψ1∥

...

...

1

b

ℓ

Markov process on P(Cd) with kernel

P(|ψ⟩, · ) =
∑
a∈A
∥Vaψ∥2 · δ |Vaψ⟩

∥Vaψ∥

=
∑
a∈A

pa(|ψ⟩)δfa(|ψ⟩)

Iterated function system, random dynamical system, ...
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We obtain ω1, ω2, . . . , ωn with probability

Pn(ω1, . . . , ωn) = ∥Vωn · · ·Vω1ψ0∥2

and then the system is in state

|ψn⟩ =
|Vωn · · ·Vω1ψ0⟩
∥Vωn · · ·Vω1ψ0∥

t

|ψ0⟩

ω1

0

|ψ1⟩

ω2

1

|ψ2⟩

ω3

2

|ψ3⟩

ω4

3

· · ·

Sequence of outcomes: ω1, ω2, . . . . Large deviations in [BJPP18],
[CJPS19], [BCJP21]

Quantum trajectory: |ψ0⟩, |ψ1⟩, . . . . Focus of this talk
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Failure of classical theory
Classical theory of Markov processes (Doeblin, Harris, Nummelin,
Meyn-Tweedie, Donsker-Varadhan, ...):

✓ Coercivity conditions that ensure Xn does not wander off

✓ Feller: if f is continuous, so is

x 7→ Pf (x) :=
∫

P(x , dy)f (y) = E[f (X1)|X0 = x ]

X ϕ-irreducibility: ∃ measure ϕ on M such that

∀A s.t. ϕ(A) > 0,∀x ∈ M, ∃n ≥ 1,Pn(x ,A) > 0

X Minorization conditions: P(x , ·) and P(y , ·) have a common
‘component’ when x , y in a well-chosen small set

Iterated function systems:
X All probabilities uniform or bounded below

X Contracting functions (on average)

X Or: ‘chaotic’ functions
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Setup Limit theorems Large deviations Keep-Switch

Assumptions

Let Φ[X ] =
∑

a∈A VaXV ∗a (quantum channel)

(Prim): Φr is positivity improving for some r ≥ 1

⇒ (Φ-Erg): Unique nontrivial subspace E ⊂ Cd invariant under
{Va : a ∈ A} ⇔ unique ρ such that Φ[ρ] = ρ

⇒ No nontrivial ‘cycle’ (aperiodicity)

(Pur): No projector π of rank ≥ 1 such that

πV ∗a1
· · ·V ∗an

Van · · ·Va1π ∝ π ∀n ≥ 1, ∀a1, . . . , an ∈ A

⇒ density matrices attracted to the set of pure states
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Setup Limit theorems Large deviations Keep-Switch

Theorem. Benoist, Fraas, Pautrat, Pellegrini ’17
Assume (Prim) and (Pur). Then the kernel P has a unique invariant
probability measure νinv on P(Cd)

and for any probability measure ν on
P(Cd),

νPn W1−−−−→ νinv exponentially fast

Here:

νPn(A) =
∫

Pn(x ,A)ν(dx)

W1 is the 1-Wasserstein metric

W1(µ, ν) = inf
π:coupl.

∫
P(Cd )×P(Cd )

d(x , y) dπ(x , y),

with d(|ψ⟩, |ϕ⟩) = (1− |⟨ψ|ϕ⟩|2) 1
2 (all unit vectors)
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Setup Limit theorems Large deviations Keep-Switch

LLN, CLT, LIL and LDP
Theorem. Benoist, Fatras, Pellegrini ’23, Benoist, Hautecœur, Pellegrini ’25
Let g ∈ C(P(Cd)) and

Sng =

n−1∑
k=0

g(|ψk⟩)

Assume (Prim) and (Pur). Then, for every initial ν on P(Cd):

LLN: 1
n Sng

a.s.−→ ⟨g⟩νinv :=
∫

g dνinv

Assume further that g is Hölder continuous

CLT: Sng−n⟨g⟩√
n

law−−→ N(0, γ2)

LIL: lim supn→∞
±(Sng−n⟨g⟩)√

2nγ2 ln ln(n)
= 1 a.s.

Existence of pressure: the limit

Λ(θ) := lim
n→∞

1
n
lnEν

(
eθSng

)
exists and is analytic on some interval (θ−, θ+) ∋ 0

Local LDP on (∂+θ Λ(θ−), ∂
−
θ Λ(θ+)) ∋ ⟨g⟩
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Setup Limit theorems Large deviations Keep-Switch

Large Deviation Principle
A sequence (Zn)n≥1 of RV’s on a topological space X satisfies the Large
Deviation Principle (LDP) if there exists a rate function I : X → [0,∞] such
that for every Borel set A ⊂ X ,

− inf
x∈Ȧ

I (x) ≤ lim inf
n→∞

1
n
lnP (Zn ∈ A) ≤ lim sup

n→∞

1
n
lnP (Zn ∈ A) ≤ − inf

x∈A
I (x)

Formally: P (Zn ≈ x) ∼ e−n I (x)

x0

I (x)

x0

+∞

Local LDP on J ⊂ X : both bounds required only for A ⊂ J

Weak LDP: lower bound for all A, upper bound for all precompact A
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Setup Limit theorems Large deviations Keep-Switch

What we would like
We would like an LDP for the empirical measures

ℓn :=
1
n

n−1∑
k=0

δ|ψk ⟩ ∈M1(P(Cd)) (with the weak topology)

with some rate function I :M1(P(Cd))→ [0,∞], i.e. P(ℓn ≈ µ) ∼ e−n I(µ)

Corollary: Fix g ∈ C(P(Cd)). Then

1
n

Sng =

∫
gdℓn = Ψg(ℓn), Ψg ∈ C(M1(P(Cd)))

By the contraction principle: LDP for 1
n Sng with rate function

I (x) = inf

{
I(µ) : µ ∈M1(P(Cd)),

∫
gdµ = x

}

Q: Under what assumptions?
Q: What is I? Not the Donsker–Varadhan rate function

IDV (µ) = sup
u≥1

∫
P(Cd )

ln
( u

Pu

)
dµ
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Q: Under what assumptions?

Q: What is I? Not the Donsker–Varadhan rate function

IDV (µ) = sup
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P(Cd )
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( u

Pu
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A digression about transients and large deviations

0

1

2

3

4

5

6

1
2 1

2

I∗

Initial measure ν. P(ℓn ≈ µ) ∼ e−n I(µ)

ν(0) = 0 ν(0) > 0

I(µ) =

{
I∗(µ) if µ(0) = 0

+∞ if µ(0) > 0

I(µ) = µ(0) ln 2 + (1− µ(0)) I∗
(
µ|■

)
= IDV (µ)
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Keep–Switch instrument
Fix p ∈ (0, 1/2). Let r = 1−p

p > 1. Let A = {K ,S}

VK =

(√
p 0

0
√

1− p

)
VS =

(
0

√
p√

1− p 0

)

(Prim) ✓

(Pur) ✓

|ψ⟩ ∝
(

x
y

) VK |ψ⟩ ∝
( √

px√
1− py

)

VS |ψ⟩ ∝
(√

1− py√
px

)
K

S

Invariant measure:

νinv = pδ|0⟩ + (1− p)δ|1⟩ ∈M1(P(C2))

Invariant state for X 7→ Φ[X ] = VKXV ∗K + VSXV ∗S :

ρ∗ =

(
p 0
0 1− p

)
=

∫
P(C2)

|ψ⟩⟨ψ|dνinv(|ψ⟩)
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A convenient parametrization

|ψ⟩ ∝
(

x
y

) VK |ψ⟩ ∝
( √

px√
1− py

)

VS |ψ⟩ ∝
(√

1− py√
px

)
K

S

Fix ϕ = 0. Markov process on R = R ∪ {−∞,+∞}:

z
z + 1

−z

pK (z) =
p

1+r z+1/2 + 1−p
1+r−z−1/2

pS(z) = 1− pK (z)

K

S

+∞
+∞

−∞

pK (+∞) = 1− p

pS(+∞) = p

K

S

−∞
−∞

+∞

pK (−∞) = p

pS(−∞) = 1− p

K

S
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Warm-up: large deviations on {−∞,+∞}

−4 −3 −2 −1 0 1 2 3 4

p

1− p

1− p

p

−∞ +∞

If the initial condition z0 is ±∞,

LDP onM1({−∞,+∞}) with rate function

S(µ|νinv) := µ(−∞) ln
µ(−∞)

p
+ µ(+∞) ln

µ(+∞)

1− p

LDP onM1(R) with rate function

I∞(µ) =

{
S(µ|νinv) if µ({−∞,+∞}) = 1,

+∞ otherwise
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Large deviations away from ±∞

−4 −3 −2 −1 0 1 2 3 4

K

S

K

S

−∞ +∞

For z0 ∈ R, the set Sz0 := {z0,−z0}+ Z is invariant. The chain on Sz0 is
irreducible.

For simplicity take z0 ∈ Z, so Sz0 = Z
Weak LDP onM1(Z) with rate function

IZ(µ) = IDV (µ) = sup
u≥1

∑
i∈Z

ln

(
u(i)
Pu(i)

)
µ(i)

See Donsker–Varadhan ’75-’76, Daures ’25
Dilemma:
▶ On Z: the theory only gives a weak LDP
▶ On Z = Z ∪ {−∞,+∞}: no classical theory because not irreducible
▶ On R: even less irreducible
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Mixing the two
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Theorem. Benoist, C, Pellegrini, Petit, 2025.
If z0 ∈ Z, then LDP onM1(R), i.e. P(ℓn ≈ µ) ∼ e−n I(µ),

with rate

I(µ) =

{
IDV (µ) if

µ(Z) = 1 and µ(+∞) ≥ µ(−∞)

+∞ otherwise

Note: If µ({−∞,+∞}) = 1 and µ(+∞) < µ(−∞) then I(µ) ̸= I∞(µ)!

Actually, LDP for any z0 ∈ R, but NOT for random initial conditions!

17/17



Setup Limit theorems Large deviations Keep-Switch

Mixing the two

−4 −3 −2 −1 0 1 2 3 4

K

S

K

S

K

S

K

S

−∞ +∞

Theorem. Benoist, C, Pellegrini, Petit, 2025.
If z0 ∈ Z, then LDP onM1(R), i.e. P(ℓn ≈ µ) ∼ e−n I(µ), with rate

I(µ) =

{
IDV (µ) if ???

µ(Z) = 1 and µ(+∞) ≥ µ(−∞)

+∞ otherwise

Note: If µ({−∞,+∞}) = 1 and µ(+∞) < µ(−∞) then I(µ) ̸= I∞(µ)!

Actually, LDP for any z0 ∈ R, but NOT for random initial conditions!

17/17



Setup Limit theorems Large deviations Keep-Switch

Mixing the two

−4 −3 −2 −1 0 1 2 3 4

K

S

K

S

K

S

K

S

−∞ +∞

Theorem. Benoist, C, Pellegrini, Petit, 2025.
If z0 ∈ Z, then LDP onM1(R), i.e. P(ℓn ≈ µ) ∼ e−n I(µ), with rate

I(µ) =

{
IDV (µ) if µ(Z) = 1

and µ(+∞) ≥ µ(−∞)

+∞ otherwise

Note: If µ({−∞,+∞}) = 1 and µ(+∞) < µ(−∞) then I(µ) ̸= I∞(µ)!

Actually, LDP for any z0 ∈ R, but NOT for random initial conditions!

17/17



Setup Limit theorems Large deviations Keep-Switch

Mixing the two

−4 −3 −2 −1 0 1 2 3 4

K

S

K

S

K

S

K

S

−∞ +∞

Theorem. Benoist, C, Pellegrini, Petit, 2025.
If z0 ∈ Z, then LDP onM1(R), i.e. P(ℓn ≈ µ) ∼ e−n I(µ), with rate

I(µ) =

{
IDV (µ) if µ(Z) = 1 and µ(+∞) ≥ µ(−∞)

+∞ otherwise

Note: If µ({−∞,+∞}) = 1 and µ(+∞) < µ(−∞) then I(µ) ̸= I∞(µ)!

Actually, LDP for any z0 ∈ R, but NOT for random initial conditions!

17/17



Setup Limit theorems Large deviations Keep-Switch

Mixing the two

−4 −3 −2 −1 0 1 2 3 4

K

S

K

S

K

S

K

S

−∞ +∞

Theorem. Benoist, C, Pellegrini, Petit, 2025.
If z0 ∈ Z, then LDP onM1(R), i.e. P(ℓn ≈ µ) ∼ e−n I(µ), with rate

I(µ) =

{
IDV (µ) if µ(Z) = 1 and µ(+∞) ≥ µ(−∞)

+∞ otherwise

Note: If µ({−∞,+∞}) = 1 and µ(+∞) < µ(−∞) then I(µ) ̸= I∞(µ)!

Actually, LDP for any z0 ∈ R, but NOT for random initial conditions!

17/17



Setup Limit theorems Large deviations Keep-Switch

Mixing the two

−4 −3 −2 −1 0 1 2 3 4

K

S

K

S

K

S

K

S

−∞ +∞

Theorem. Benoist, C, Pellegrini, Petit, 2025.
If z0 ∈ Z, then LDP onM1(R), i.e. P(ℓn ≈ µ) ∼ e−n I(µ), with rate

I(µ) =

{
IDV (µ) if µ(Z) = 1 and µ(+∞) ≥ µ(−∞)

+∞ otherwise

Note: If µ({−∞,+∞}) = 1 and µ(+∞) < µ(−∞) then I(µ) ̸= I∞(µ)!

Actually, LDP for any z0 ∈ R, but NOT for random initial conditions!
17/17



Setup Limit theorems Large deviations Keep-Switch

Thank you!

17/17



Setup Limit theorems Large deviations Keep-Switch

Thank you!

17/17


	Setup: quantum trajectories
	Existing limit theorems
	Large deviations (open problem!)
	Example: Keep-Switch instrument

