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quantum channel

Repeated measurements. In state |1) the probability to obtain

a € Ais || V,¥]]?. The new state of the system is then ‘l‘\\z%

Examples:
Von Neumann (+ time evolution): V, = UP,V with U, V unitary
Ancilla: V; = (1® (a[)W(1 ® |p)) with W unitary on H @ H,
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We obtain wq, wo, ..., wp with probability

Pn(wl """ (JJn) = || V"Jn e le’lpOH2

and then the system is in state

o | \/CAJn e \/1A/1 7!’()>
n) = I Viribol
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Sequence of outcomes: wi, wo, .. .. Large deviations in [BJPP1§],
[CJPS19], [BCJP21]
Quantum trajectory: |¥o), [¥1), . ... Focus of this talk
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v~ Coercivity conditions that ensure X,, does not wander off
v’ Feller: if f is continuous, so is
X = Pf(x):= /P(x, dy)f(y) = E[f(X1)|Xo = x]
X -irreducibility: 3 measure ¢ on M such that
VAs.t p(A)>0,Vxe M,In>1,P"(x,A) >0
X Minorization conditions: P(x,-) and P(y,-) have a common
‘component’ when x, y in a well-chosen small set
Iterated function systems:
X All probabilities uniform or bounded below
X Contracting functions (on average)
X Or: ‘chaotic’ functions
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(Prim): ®" is positivity improving for some r > 1

= (®-Erg): Unique nontrivial subspace £ C C? invariant under
{V,:ae€ A} & unique p such that ®[p] = p

= No nontrivial ‘cycle’ (aperiodicity)

(Pur): No projector 7 of rank > 1 such that
wVy VoV o Vogmoo T Yn2>1, Vay,...,a, € A

= density matrices attracted to the set of pure states
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Theorem. Benoist, Fraas, Pautrat, Pellegrini '17
Assume (Prim) and (Pur). Then the kernel P has a unique invariant
probability measure v4,, on P(CY) and for any probability measure v on
P(CY),

1

W, .
vP" —— 1,y exponentially fast

Here:
vP"(A) = [ P"(x, A)v(dx)

W is the 1-Wasserstein metric

Wi(w,v) = inf d(x,y)dm(x,y),
T:coupl. P(C?)xP(C)

with d(|9), [@)) = (1 — [(|@)[?)? (all unit vectors)

7/17



Setup Limit theorems Large deviations Keep-Switch

LLN, CLT, LIL and LDP

Theorem. Benoist, Fatras, Pellegrini '23, Benoist, Hautecceur, Pellegrini '25
Let g € C(P(C%)) and

Sig =3 allwn)



Setup Limit theorems Large deviations Keep-Switch

LLN, CLT, LIL and LDP

Theorem. Benoist, Fatras, Pellegrini '23, Benoist, Hautecceur, Pellegrini '25
Let g € C(P(C%)) and

Sg =3 o(e)

Assume (Prim) and (Pur). Then, for every initial v on P(C%):
LLN: 1S,9 2% (g)u,,., = [ g dViny



Setup Limit theorems Large deviations Keep-Switch

LLN, CLT, LIL and LDP

Theorem. Benoist, Fatras, Pellegrini '23, Benoist, Hautecceur, Pellegrini '25
Let g € C(P(C%)) and

n—1
Sng = ZQ(WW)
k=0
Assume (Prim) and (Pur). Then, for every initial v on P(C%):

LLN: 1S,9 2% (g)u,,., = [ g dViny

Assume further that g is Holder continuous



Setup Limit theorems Large deviations Keep-Switch

LLN, CLT, LIL and LDP

Theorem. Benoist, Fatras, Pellegrini '23, Benoist, Hautecceur, Pellegrini '25
Let g € C(P(C%)) and

a=3"g(lve)

Assume (Prim) and (Pur). Then, for every initial v on P(C%):
LLN: 15,9 2% (9)u, = [ 9 dViny
Assume further that g is Holder continuous

CLT: 229 2% n(0, 42)



Setup Limit theorems Large deviations Keep-Switch

LLN, CLT, LIL and LDP

Theorem. Benoist, Fatras, Pellegrini '23, Benoist, Hautecceur, Pellegrini '25
Let g € C(P(C%)) and

a=3"g(lve)

Assume (Prim) and (Pur). Then, for every initial v on P(C%):
LLN: 509 = (9)uyy, = [ 9 dViny

Assume further that g is Holder continuous
CLT: 229 2% n(0, 42)

+(Sng—n(g))

=1as.
2ny2 InIn(n)

LIL: limsup,_, .



Setup Limit theorems Large deviations Keep-Switch

LLN, CLT, LIL and LDP

Theorem. Benoist, Fatras, Pellegrini '23, Benoist, Hautecceur, Pellegrini '25
Let g € C(P(C%)) and

n—1
EDIE))
k=0
Assume (Prim) and (Pur). Then, for every initial v on P(C%):
LLN: 509 = (9)uyy, = [ 9 dViny
Assume further that g is Holder continuous
CLT: 229 2% n(0, 42)

LIL: limsup, ., —&09=m9) — 1 55

2ny2 InIn(n)

Existence of pressure: the limit
1
A®) = lim fanEV(e“”g)
n—oo N

exists and is analytic on some interval (6—,64) >0



Setup Limit theorems Large deviations Keep-Switch

LLN, CLT, LIL and LDP

Theorem. Benoist, Fatras, Pellegrini '23, Benoist, Hautecceur, Pellegrini '25
Let g € C(P(C%)) and

g= ig(wm

Assume (Prim) and (Pur). Then, for every initial v on P(C%):
LLN: 1S,9 2% (g)u,,., = [ g dViny

Assume further that g is Holder continuous

law

CLT: 209 2% N(0,~%)

LIL: limsup,_,, % =1las.

Existence of pressure: the limit
1
A®) = lim fanEV(e“”g)
n—oo N

exists and is analytic on some interval (6—,64) >0
Local LDP on (8 A(8-), 8; A(6+)) 3 (9)
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A sequence (Z,)n>1 of RV's on a topological space X satisfies the Large
Deviation Principle (LDP) if there exists a rate function / : X — [0, co] such
that for every Borel set A C X,

—inf /(x) < Iiminflln]P’(Zn € A) < Iimsupl InP(Z, € A) < —inf I(x)
x€A n—oo 1 n—oo N x€A

Formally: P(Z, &~ x) ~ e "'

Local LDP on J C X: both bounds required only for A C J
Weak LDP: lower bound for all A, upper bound for all precompact A
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We would like an LDP for the empirical measures
n—1

L, = %Z Oy € Ml(P((Cd)) (with the weak topology)
k=0

with some rate function T: My (P(C?)) — [0, oc], i.e. P(£, & p) ~ e ")
Corollary: Fix g € C(P(CY)). Then

%Sng _ /gdln =W, (L), Wy e C(Mi(P(CY)))

1

n

By the contraction principle: LDP for +S,g with rate function

1) = inf {H(u) e Mi(P(C)), [ gdu = x}

Q: Under what assumptions?
Q: What is I7? Not the Donsker—Varadhan rate function

u
I =su In d
DV(M) Uzli ~/P(Cd) ( :DLI) H
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A digression about transients and large deviations

1

2 1
N 2
() =

OO

P @ /@\,3

\ )
\ O
\ 7 //"@
“/
\
\\ \
\\\‘ _—

\

L

Initial measure v. P(£, ~ ) ~ ()

Keep-Switch

v(0)=0

) = {H*(u) if u(0) =0

+oo if u(0) >0
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A digression about transients and large deviations

NI

N
~
‘ Nl

&1

Initial measure v. P(£, ~ ) ~ ()

v(0)=0 v(0) >0

fy _ JE) i) =0 | ) =p(0)In2+ (1~ u(0)) L(ulm)
() = oo if u(0)>0 = Ipv(n)
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Keep—Switch instrument
Fix p€(0,1/2). Let r = 1;pp > 1. Let A={K, S}

VK:(@ 0) v5=<0 \/5) (Prim) v

0 Vvi-p vi-p 0 (Pur) v
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A convenient parametrization

NN

Fix ¢ = 0.
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s () ()

~—~
R
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L
+
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Vpx 1
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Fix ¢ = 0. Markov process on R = R U {—o0, +00}:

K z+1 Pi(2) = mlem + e
z < ' '
s -z ps(z) =1 — pk(2)
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If the initial condition zy is £o0,
LDP on M;({—o0, +00}) with rate function

p(—0o0)

p(+o0)
1-p

S(|Viny) == p(—o0) In + p(+o0) In
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Warm-up: large deviations on {—o0, +00}

1-p

If the initial condition zy is £o0,
LDP on M;({—o0, +00}) with rate function

p(—0o0)

S(|Viny) == p(—o0) In T + w(+00)In M

1-p
LDP on M;(R) with rate function

— S(/J"l/inv) if ,Uf({*OO, +OO}) =1,
)= {+OO otherwise
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For zp € R, the set S,, := {2y, =20} + Z is invariant. The chain on S, is
irreducible.
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irreducible. For simplicity take zg € Z, so S, = Z

Weak LDP on M;(Z) with rate function

u(i) .
I =1 =su In . I
0 = lov(s) = s 3 ()t
See Donsker—Varadhan '75-'76, Daures '25
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Large deviations away from =+oo

For zp € R, the set S,, := {2y, =20} + Z is invariant. The chain on S, is
irreducible. For simplicity take zg € Z, so S, = Z

Weak LDP on M;(Z) with rate function

Iz(n) = Ipv (k) = fér;é In (;{58)) w(7)

See Donsker—Varadhan '75-'76, Daures '25
Dilemma:

» On Z: the theory only gives a weak LDP

» OnZ=7ZU{—o00, +oo}: no classical theory because not irreducible
» On R: even less irreducible
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K
P
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Theorem. Benoist, C, Pellegrini, Petit, 2025.
If zy € Z, then LDP on My(R), i.e. P(£, ~ u) ~ e "4,
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S
K K
H—+—+ i
—00 +00

Theorem. Benoist, C, Pellegrini, Petit, 2025.
If zo € Z, then LDP on My(R), i.e. P(£, ~ u) ~ e "¥) with rate

) {HDV(/J,) if 727

B +00 otherwise
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H—+— e
—00 400

Theorem. Benoist, C, Pellegrini, Petit, 2025.
If zo € Z, then LDP on My(R), i.e. P(£, ~ u) ~ e "¥) with rate

Iu) = Ipy(p) if w(Z) =1 and p(+o00) > p(—o0)
w1 = +o00 otherwise
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Mixing the two

S
K K
H—+— e
—00 400

Theorem. Benoist, C, Pellegrini, Petit, 2025.
If zo € Z, then LDP on My(R), i.e. P(£, ~ u) ~ e "¥) with rate

_ JIov(k) if u(Z) =1 and p(+o0) = u(—o0)

I(p) = .
400 otherwise

Note: If u({—o0, +00}) =1 and u(+o0) < u(—o0) then I(w) # Too()!

Actually, LDP for any z € R, but NOT for random initial conditions!
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