# Large deviations for quantum trajectories: a look at the Keep–Switch instrument\*

September 15, 2025, Quantissima sur Oise, Cergy

Noé Cuneo LPSM, Université Paris Cité

\*ongoing work with T. Benoist, J.-L. Fatras, C. Pellegrini and P. Petit





#### Contents

- Setup: quantum trajectories
- Existing limit theorems
- Large deviations (open problem!)
- Example: Keep-Switch instrument

lacksquare Hilbert space  $\mathcal{H}=\mathbb{C}^d$ 

- $\blacksquare$  Hilbert space  $\mathcal{H} = \mathbb{C}^d$
- Finite set A

- $\blacksquare$  Hilbert space  $\mathcal{H} = \mathbb{C}^d$
- Finite set A
- Collection  $\{V_a\}_{a\in\mathcal{A}}$  of matrices such that

$$\sum_{a\in A}V_a^*V_a=\mathbf{1},$$

so  $\{V_a^*V_a\}_{a\in\mathcal{A}}$  is a discrete POVM, and  $X\mapsto \sum_{a\in\mathcal{A}}V_aXV_a^*$  is a quantum channel

- $\blacksquare$  Hilbert space  $\mathcal{H} = \mathbb{C}^d$
- Finite set A
- Collection  $\{V_a\}_{a\in\mathcal{A}}$  of matrices such that

$$\sum_{a\in A}V_a^*V_a=\mathbf{1},$$

so  $\{V_a^*V_a\}_{a\in\mathcal{A}}$  is a discrete POVM, and  $X\mapsto \sum_{a\in\mathcal{A}}V_aXV_a^*$  is a quantum channel

**Repeated measurements**. In state  $|\psi\rangle$  the probability to obtain  $a \in \mathcal{A}$  is  $||V_a\psi||^2$ .

- $\blacksquare$  Hilbert space  $\mathcal{H} = \mathbb{C}^d$
- Finite set A
- Collection  $\{V_a\}_{a \in A}$  of matrices such that

$$\sum_{a\in A}V_a^*V_a=\mathbf{1},$$

so  $\{V_a^*V_a\}_{a\in\mathcal{A}}$  is a discrete POVM, and  $X\mapsto \sum_{a\in\mathcal{A}}V_aXV_a^*$  is a quantum channel

**Repeated measurements**. In state  $|\psi\rangle$  the probability to obtain  $a \in \mathcal{A}$  is  $||V_a\psi||^2$ . The new state of the system is then  $\frac{||V_a\psi\rangle|}{||V_a\psi||}$ 

- $\blacksquare$  Hilbert space  $\mathcal{H} = \mathbb{C}^d$
- Finite set A
- Collection  $\{V_a\}_{a \in A}$  of matrices such that

$$\sum_{a\in A}V_a^*V_a=\mathbf{1},$$

so  $\{V_a^*V_a\}_{a\in\mathcal{A}}$  is a discrete POVM, and  $X\mapsto \sum_{a\in\mathcal{A}}V_aXV_a^*$  is a quantum channel

**Repeated measurements**. In state  $|\psi\rangle$  the probability to obtain  $a \in \mathcal{A}$  is  $||V_a\psi||^2$ . The new state of the system is then  $\frac{|V_a\psi\rangle}{||V_a\psi||}$ 

#### **Examples:**

Von Neumann (+ time evolution):  $V_a = UP_aV$  with U, V unitary

- $\blacksquare$  Hilbert space  $\mathcal{H} = \mathbb{C}^d$
- Finite set A
- Collection  $\{V_a\}_{a \in A}$  of matrices such that

$$\sum_{a\in\mathcal{A}}V_a^*V_a=\mathbf{1},$$

so  $\{V_a^*V_a\}_{a\in\mathcal{A}}$  is a discrete POVM, and  $X\mapsto \sum_{a\in\mathcal{A}}V_aXV_a^*$  is a quantum channel

**Repeated measurements**. In state  $|\psi\rangle$  the probability to obtain  $a \in \mathcal{A}$  is  $||V_a\psi||^2$ . The new state of the system is then  $\frac{|V_a\psi\rangle}{||V_a\psi||}$ 

#### **Examples:**

- Von Neumann (+ time evolution):  $V_a = UP_aV$  with U, V unitary
- Ancilla:  $V_a = (\mathbf{1} \otimes \langle a |) W(\mathbf{1} \otimes | p \rangle)$  with W unitary on  $\mathcal{H} \otimes \mathcal{H}_p$

Large deviations

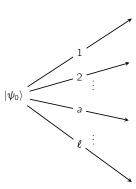
 $\mathcal{A} = \{1, 2, \dots, \ell\}.$ 

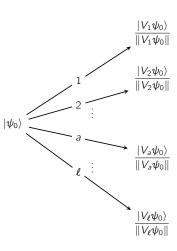
Keep-Switch

 $\mathcal{A} = \{1, 2, \dots, \ell\}.$ 

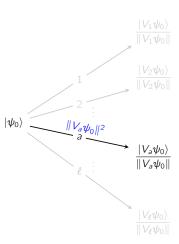
Keep-Switch

$$\mathcal{A} = \{1, 2, \dots, \ell\}.$$



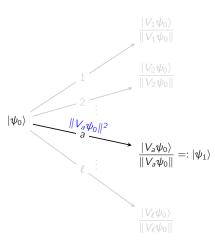


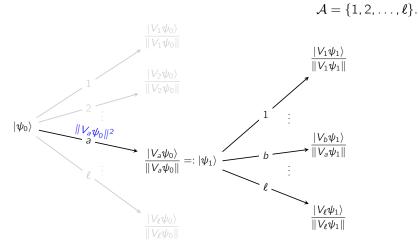
$$\mathcal{A} = \{1, 2, \dots, \ell\}.$$



$$\mathcal{A} = \{1, 2, \dots, \ell\}.$$

$$\mathcal{A} = \{1, 2, \dots, \ell\}.$$

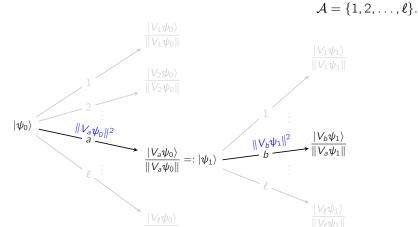




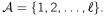
$$\mathcal{A} = \{1, 2, \dots, \ell\}.$$

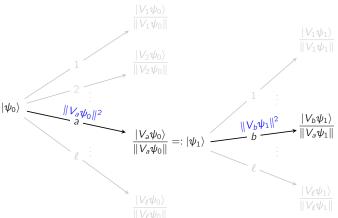
$$|\psi_0\rangle = |\psi_0\rangle = |\psi_1\rangle = |\psi_1\rangle$$

$$|\psi_0\rangle = |\psi_1\rangle = |\psi_1\rangle = |\psi_1\rangle$$

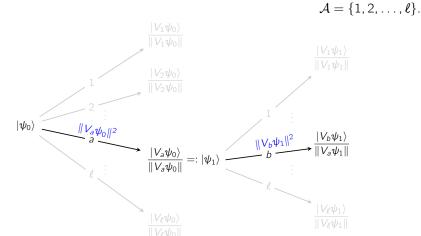


$$P(|\psi\rangle, \cdot) = \sum_{a,b} \|V_a\psi\|^2 \cdot \delta_{\frac{|V_a\psi\rangle}{\|V_a\psi\|}}$$



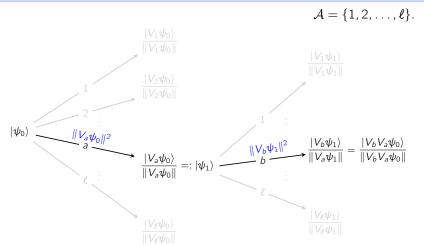


$$P(|\psi\rangle, \cdot) = \sum_{a \in \mathcal{A}} \|V_a \psi\|^2 \cdot \delta_{\frac{|V_a \psi\rangle}{\|V_a \psi\|}} = \sum_{a \in \mathcal{A}} p_a(|\psi\rangle) \delta_{f_a(|\psi\rangle)}$$



$$P(|\psi\rangle, \cdot \cdot) = \sum_{a \in \mathcal{A}} \|V_a \psi\|^2 \cdot \delta_{\frac{|V_a \psi\rangle}{\|V_a \psi\|}} = \sum_{a \in \mathcal{A}} p_a(|\psi\rangle) \delta_{f_a(|\psi\rangle)}$$

Iterated function system, random dynamical system, ...



$$P(|\psi\rangle, \cdot \cdot) = \sum_{a \in \mathcal{A}} \|V_a \psi\|^2 \cdot \delta_{\frac{|V_a \psi\rangle}{\|V_a \psi\|}} = \sum_{a \in \mathcal{A}} p_a(|\psi\rangle) \delta_{f_a(|\psi\rangle)}$$

Iterated function system, random dynamical system, ...

• We obtain  $\omega_1, \omega_2, \ldots, \omega_n$  with probability

$$\mathbb{P}_n(\omega_1,\ldots,\omega_n) = \|V_{\omega_n}\cdots V_{\omega_1}\psi_0\|^2$$

and then the system is in state

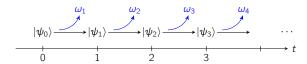
$$|\psi_n
angle = rac{|V_{\omega_n}\cdots V_{\omega_1}\psi_0
angle}{\|V_{\omega_n}\cdots V_{\omega_1}\psi_0\|}$$

We obtain  $\omega_1, \omega_2, \dots, \omega_n$  with probability

$$\mathbb{P}_n(\omega_1,\ldots,\omega_n) = \|V_{\omega_n}\cdots V_{\omega_1}\psi_0\|^2$$

and then the system is in state

$$|\psi_n
angle = rac{|V_{\omega_n}\cdots V_{\omega_1}\psi_0
angle}{\|V_{\omega_n}\cdots V_{\omega_1}\psi_0\|}$$

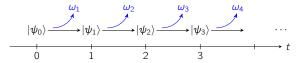


• We obtain  $\omega_1, \omega_2, \ldots, \omega_n$  with probability

$$\mathbb{P}_n(\omega_1,\ldots,\omega_n) = \|V_{\omega_n}\cdots V_{\omega_1}\psi_0\|^2$$

and then the system is in state

$$|\psi_n
angle = rac{|V_{\omega_n}\cdots V_{\omega_1}\psi_0
angle}{\|V_{\omega_n}\cdots V_{\omega_1}\psi_0\|}$$



- **Sequence of outcomes**:  $\omega_1, \omega_2, \ldots$  Large deviations in [BJPP18], [CJPS19], [BCJP21]
- **Quantum trajectory**:  $|\psi_0\rangle$ ,  $|\psi_1\rangle$ , . . . . Focus of this talk

## Failure of classical theory

**Classical theory of Markov processes** (Doeblin, Harris, Nummelin, Meyn-Tweedie, Donsker-Varadhan, ...):

# Failure of classical theory

**Classical theory of Markov processes** (Doeblin, Harris, Nummelin, Meyn-Tweedie, Donsker-Varadhan, ...):

 $\checkmark$  Coercivity conditions that ensure  $X_n$  does not wander off

# Failure of classical theory

**Classical theory of Markov processes** (Doeblin, Harris, Nummelin, Meyn-Tweedie, Donsker-Varadhan, ...):

- $\checkmark$  Coercivity conditions that ensure  $X_n$  does not wander off
- $\checkmark$  Feller: if f is continuous, so is

$$x \mapsto Pf(x) := \int P(x, dy)f(y) = \mathbb{E}[f(X_1)|X_0 = x]$$

# Failure of classical theory

**Classical theory of Markov processes** (Doeblin, Harris, Nummelin, Meyn-Tweedie, Donsker-Varadhan, ...):

- $\checkmark$  Coercivity conditions that ensure  $X_n$  does not wander off
- $\checkmark$  Feller: if f is continuous, so is

$$x \mapsto Pf(x) := \int P(x, dy)f(y) = \mathbb{E}[f(X_1)|X_0 = x]$$

 $\times$  φ-irreducibility:  $\exists$  measure  $\varphi$  on M such that

$$\forall A \text{ s.t. } \varphi(A) > 0, \forall x \in M, \exists n \geq 1, P^n(x, A) > 0$$

# Failure of classical theory

**Classical theory of Markov processes** (Doeblin, Harris, Nummelin, Meyn-Tweedie, Donsker-Varadhan, ...):

- $\checkmark$  Coercivity conditions that ensure  $X_n$  does not wander off
- $\checkmark$  Feller: if f is continuous, so is

$$x \mapsto Pf(x) := \int P(x, dy)f(y) = \mathbb{E}[f(X_1)|X_0 = x]$$

X φ-irreducibility:  $\exists$  measure  $\varphi$  on M such that

$$\forall A \text{ s.t. } \varphi(A) > 0, \forall x \in M, \exists n \geq 1, P^n(x, A) > 0$$

X Minorization conditions:  $P(x, \cdot)$  and  $P(y, \cdot)$  have a common 'component' when x, y in a well-chosen small set

# Failure of classical theory

**Classical theory of Markov processes** (Doeblin, Harris, Nummelin, Meyn-Tweedie, Donsker-Varadhan, ...):

- $\checkmark$  Coercivity conditions that ensure  $X_n$  does not wander off
- $\checkmark$  Feller: if f is continuous, so is

$$x \mapsto Pf(x) := \int P(x, dy)f(y) = \mathbb{E}[f(X_1)|X_0 = x]$$

 $\times$  φ-irreducibility:  $\exists$  measure  $\varphi$  on M such that

$$\forall A \text{ s.t. } \varphi(A) > 0, \forall x \in M, \exists n \geq 1, P^n(x, A) > 0$$

X Minorization conditions:  $P(x, \cdot)$  and  $P(y, \cdot)$  have a common 'component' when x, y in a well-chosen small set

#### **Iterated function systems:**

# Failure of classical theory

**Classical theory of Markov processes** (Doeblin, Harris, Nummelin, Meyn-Tweedie, Donsker-Varadhan, ...):

- $\checkmark$  Coercivity conditions that ensure  $X_n$  does not wander off
- $\checkmark$  Feller: if f is continuous, so is

$$x \mapsto Pf(x) := \int P(x, dy)f(y) = \mathbb{E}[f(X_1)|X_0 = x]$$

 $\times$  φ-irreducibility:  $\exists$  measure  $\varphi$  on M such that

$$\forall A \text{ s.t. } \varphi(A) > 0, \forall x \in M, \exists n \geq 1, P^n(x, A) > 0$$

X Minorization conditions:  $P(x, \cdot)$  and  $P(y, \cdot)$  have a common 'component' when x, y in a well-chosen small set

#### **Iterated function systems:**

X All probabilities uniform or bounded below

# Failure of classical theory

**Classical theory of Markov processes** (Doeblin, Harris, Nummelin, Meyn-Tweedie, Donsker-Varadhan, ...):

- $\checkmark$  Coercivity conditions that ensure  $X_n$  does not wander off
- $\checkmark$  Feller: if f is continuous, so is

$$x \mapsto Pf(x) := \int P(x, dy)f(y) = \mathbb{E}[f(X_1)|X_0 = x]$$

X φ-irreducibility:  $\exists$  measure  $\varphi$  on M such that

$$\forall A \text{ s.t. } \varphi(A) > 0, \forall x \in M, \exists n \geq 1, P^n(x, A) > 0$$

X Minorization conditions:  $P(x, \cdot)$  and  $P(y, \cdot)$  have a common 'component' when x, y in a well-chosen small set

#### **Iterated function systems:**

- X All probabilities uniform or bounded below
- X Contracting functions (on average)

# Failure of classical theory

**Classical theory of Markov processes** (Doeblin, Harris, Nummelin, Meyn-Tweedie, Donsker-Varadhan, ...):

- $\checkmark$  Coercivity conditions that ensure  $X_n$  does not wander off
- $\checkmark$  Feller: if f is continuous, so is

$$x \mapsto Pf(x) := \int P(x, dy)f(y) = \mathbb{E}[f(X_1)|X_0 = x]$$

X φ-irreducibility:  $\exists$  measure  $\varphi$  on M such that

$$\forall A \text{ s.t. } \varphi(A) > 0, \forall x \in M, \exists n \geq 1, P^n(x, A) > 0$$

X Minorization conditions:  $P(x, \cdot)$  and  $P(y, \cdot)$  have a common 'component' when x, y in a well-chosen small set

#### **Iterated function systems:**

- X All probabilities uniform or bounded below
- X Contracting functions (on average)
- X Or: 'chaotic' functions

### Assumptions

Let 
$$\Phi[X] = \sum_{a \in \mathcal{A}} V_a X V_a^*$$
 (quantum channel)

### Assumptions

Let 
$$\Phi[X] = \sum_{a \in A} V_a X V_a^*$$
 (quantum channel)

**Prim**):  $\Phi^r$  is positivity improving for some  $r \ge 1$ 

### Assumptions

Let 
$$\Phi[X] = \sum_{a \in A} V_a X V_a^*$$
 (quantum channel)

**Prim**):  $\Phi^r$  is positivity improving for some  $r \ge 1$ 

 $\Rightarrow$  (Φ-Erg): Unique nontrivial subspace  $E \subset \mathbb{C}^d$  invariant under  $\{V_a: a \in \mathcal{A}\}$ 

Let 
$$\Phi[X] = \sum_{a \in \mathcal{A}} V_a X V_a^*$$
 (quantum channel)

- **Prim**):  $\Phi^r$  is positivity improving for some r > 1
  - $\Rightarrow$  (Φ-Erg): Unique nontrivial subspace  $E \subset \mathbb{C}^d$  invariant under  $\{V_a: a \in \mathcal{A}\} \Leftrightarrow$  unique  $\rho$  such that  $\Phi[\rho] = \rho$

Let 
$$\Phi[X] = \sum_{a \in \mathcal{A}} V_a X V_a^*$$
 (quantum channel)

- **Prim**):  $\Phi^r$  is positivity improving for some r > 1
  - $\Rightarrow$  (Φ-Erg): Unique nontrivial subspace  $E \subset \mathbb{C}^d$  invariant under  $\{V_a: a \in \mathcal{A}\} \Leftrightarrow$  unique  $\rho$  such that  $\Phi[\rho] = \rho$
  - ⇒ No nontrivial 'cycle' (aperiodicity)

Let 
$$\Phi[X] = \sum_{a \in \mathcal{A}} V_a X V_a^*$$
 (quantum channel)

- **Prim**):  $\Phi^r$  is positivity improving for some  $r \ge 1$ 
  - $\Rightarrow$  (Φ-Erg): Unique nontrivial subspace  $E \subset \mathbb{C}^d$  invariant under  $\{V_a: a \in \mathcal{A}\} \Leftrightarrow$  unique  $\rho$  such that  $\Phi[\rho] = \rho$
  - ⇒ No nontrivial 'cycle' (aperiodicity)
- **Pur**): No projector  $\pi$  of rank  $\geq 1$  such that

$$\pi V_{a_1}^* \cdots V_{a_n}^* V_{a_n} \cdots V_{a_1} \pi \propto \pi \quad \forall n \geq 1, \ \forall a_1, \ldots, a_n \in \mathcal{A}$$

Let 
$$\Phi[X] = \sum_{a \in \mathcal{A}} V_a X V_a^*$$
 (quantum channel)

- **Prim**):  $\Phi^r$  is positivity improving for some  $r \ge 1$ 
  - $\Rightarrow$  (Φ-Erg): Unique nontrivial subspace  $E \subset \mathbb{C}^d$  invariant under  $\{V_a: a \in \mathcal{A}\} \Leftrightarrow$  unique  $\rho$  such that  $\Phi[\rho] = \rho$
  - ⇒ No nontrivial 'cycle' (aperiodicity)
- **Pur**): No projector  $\pi$  of rank  $\geq 1$  such that

$$\pi V_{a_1}^* \cdots V_{a_n}^* V_{a_n} \cdots V_{a_1} \pi \propto \pi \quad \forall n \geq 1, \ \forall a_1, \ldots, a_n \in \mathcal{A}$$

⇒ density matrices attracted to the set of pure states

**Theorem**. Benoist, Fraas, Pautrat, Pellegrini '17

Assume (Prim) and (Pur). Then the kernel P has a unique invariant probability measure  $\nu_{\rm inv}$  on  ${\bf P}(\mathbb{C}^d)$ 

Theorem. Benoist, Fraas, Pautrat, Pellegrini '17

Assume (Prim) and (Pur). Then the kernel P has a unique invariant probability measure  $\nu_{\mathrm{inv}}$  on  $\mathbf{P}(\mathbb{C}^d)$  and for any probability measure  $\nu$  on  $\mathbf{P}(\mathbb{C}^d)$ ,

$$\nu P^n \xrightarrow{W_1} \nu_{\text{inv}}$$
 exponentially fast

Here:

- $\mathbf{P}^n(A) = \int P^n(x, A) \nu(dx)$
- $W_1$  is the 1-Wasserstein metric

$$W_1(\mu,\nu) = \inf_{\pi: \text{coupl.}} \int_{\mathsf{P}(\mathbb{C}^d) \times \mathsf{P}(\mathbb{C}^d)} d(x,y) \, d\pi(x,y),$$

with 
$$d(|\psi\rangle, |\varphi\rangle) = (1 - |\langle\psi|\varphi\rangle|^2)^{\frac{1}{2}}$$
 (all unit vectors)

**Theorem**. Benoist, Fatras, Pellegrini '23, Benoist, Hautecœur, Pellegrini '25 Let  $g \in C(\mathbf{P}(\mathbb{C}^d))$  and

$$S_n g = \sum_{k=0}^{n-1} g(|\psi_k\rangle)$$

**Theorem**. Benoist, Fatras, Pellegrini '23, Benoist, Hautecœur, Pellegrini '25 Let  $g \in C(\mathbf{P}(\mathbb{C}^d))$  and

$$S_n g = \sum_{k=0}^{n-1} g(|\psi_k\rangle)$$

Assume (Prim) and (Pur). Then, for every initial  $\nu$  on  $\mathbf{P}(\mathbb{C}^d)$ :

**LLN**:  $\frac{1}{n}S_ng \xrightarrow{\text{a.s.}} \langle g \rangle_{\nu_{\text{inv}}} := \int g \, d\nu_{\text{inv}}$ 

**Theorem**. Benoist, Fatras, Pellegrini '23, Benoist, Hautecœur, Pellegrini '25 Let  $g \in C(\mathbf{P}(\mathbb{C}^d))$  and

$$S_n g = \sum_{k=0}^{n-1} g(|\psi_k\rangle)$$

Assume (Prim) and (Pur). Then, for every initial  $\nu$  on  $\mathbf{P}(\mathbb{C}^d)$ :

**LLN**: 
$$\frac{1}{n}S_ng \xrightarrow{\text{a.s.}} \langle g \rangle_{\nu_{\text{inv}}} := \int g \, d\nu_{\text{inv}}$$

Assume further that g is Hölder continuous

# LLN, CLT, LIL and LDP

**Theorem**. Benoist, Fatras, Pellegrini '23, Benoist, Hautecœur, Pellegrini '25 Let  $g \in C(\mathbf{P}(\mathbb{C}^d))$  and

$$S_n g = \sum_{k=0}^{n-1} g(|\psi_k\rangle)$$

Assume (Prim) and (Pur). Then, for every initial  $\nu$  on  $\mathbf{P}(\mathbb{C}^d)$ :

**LLN**:  $\frac{1}{n}S_ng \xrightarrow{\text{a.s.}} \langle g \rangle_{\nu_{\text{inv}}} := \int g \, d\nu_{\text{inv}}$ 

Assume further that g is Hölder continuous

**CLT**: 
$$\frac{S_n g - n \langle g \rangle}{\sqrt{n}} \xrightarrow{law} N(0, \gamma^2)$$

# LLN, CLT, LIL and LDP

**Theorem**. Benoist, Fatras, Pellegrini '23, Benoist, Hautecœur, Pellegrini '25 Let  $g \in C(\mathbf{P}(\mathbb{C}^d))$  and

$$S_n g = \sum_{k=0}^{n-1} g(|\psi_k\rangle)$$

Assume (Prim) and (Pur). Then, for every initial  $\nu$  on  $\mathbf{P}(\mathbb{C}^d)$ :

**LLN**:  $\frac{1}{n}S_ng \xrightarrow{\text{a.s.}} \langle g \rangle_{\nu_{\text{inv}}} := \int g \, d\nu_{\text{inv}}$ 

Assume further that g is Hölder continuous

- **CLT**:  $\frac{S_n g n \langle g \rangle}{\sqrt{n}} \xrightarrow{law} N(0, \gamma^2)$
- **LIL**:  $\limsup_{n\to\infty} \frac{\pm (S_n g n\langle g \rangle)}{\sqrt{2n\gamma^2 \ln \ln(n)}} = 1$  a.s.

# LLN, CLT, LIL and LDP

**Theorem**. Benoist, Fatras, Pellegrini '23, Benoist, Hautecœur, Pellegrini '25 Let  $g \in C(\mathbf{P}(\mathbb{C}^d))$  and

$$S_n g = \sum_{k=0}^{n-1} g(|\psi_k\rangle)$$

Assume (Prim) and (Pur). Then, for every initial  $\nu$  on  $\mathbf{P}(\mathbb{C}^d)$ :

**LLN**:  $\frac{1}{n}S_ng \xrightarrow{\text{a.s.}} \langle g \rangle_{\nu_{\text{inv}}} := \int g \, d\nu_{\text{inv}}$ 

Assume further that g is Hölder continuous

- **CLT**:  $\frac{S_n g n \langle g \rangle}{\sqrt{n}} \xrightarrow{law} N(0, \gamma^2)$
- LIL:  $\limsup_{n\to\infty} \frac{\pm (S_n g n\langle g \rangle)}{\sqrt{2n\gamma^2 \ln \ln(n)}} = 1$  a.s.
- **Existence of pressure**: the limit

$$\Lambda( heta) := \lim_{n o \infty} rac{1}{n} \ln \mathbb{E}_{
u} \Big( e^{ heta S_n g} \Big)$$

exists and is analytic on some interval  $(\theta_-, \theta_+) \ni 0$ 

**Theorem**. Benoist, Fatras, Pellegrini '23, Benoist, Hautecœur, Pellegrini '25 Let  $g \in C(\mathbf{P}(\mathbb{C}^d))$  and

$$S_n g = \sum_{k=0}^{n-1} g(|\psi_k\rangle)$$

Assume (Prim) and (Pur). Then, for every initial  $\nu$  on  $\mathbf{P}(\mathbb{C}^d)$ :

**LLN**:  $\frac{1}{n}S_ng \xrightarrow{\text{a.s.}} \langle g \rangle_{\nu_{\text{inv}}} := \int g \, d\nu_{\text{inv}}$ 

Assume further that g is Hölder continuous

- **CLT**:  $\frac{S_n g n \langle g \rangle}{\sqrt{n}} \xrightarrow{law} N(0, \gamma^2)$
- LIL:  $\limsup_{n\to\infty} \frac{\pm (S_n g n\langle g \rangle)}{\sqrt{2n\gamma^2 \ln \ln(n)}} = 1$  a.s.
- **Existence of pressure**: the limit

$$\Lambda( heta) := \lim_{n o \infty} rac{1}{n} \ln \mathbb{E}_{
u} \Big( e^{ heta S_n g} \Big)$$

exists and is analytic on some interval  $(\theta_-, \theta_+) \ni 0$ 

**Local LDP** on  $(\partial_{\theta}^+ \Lambda(\theta_-), \partial_{\theta}^- \Lambda(\theta_+)) \ni \langle g \rangle$ 

A sequence  $(Z_n)_{n\geq 1}$  of RV's on a topological space X satisfies the **Large Deviation Principle (LDP)** if there exists a rate function  $I:X\to [0,\infty]$  such that for every Borel set  $A\subset X$ ,

A sequence  $(Z_n)_{n\geq 1}$  of RV's on a topological space X satisfies the **Large Deviation Principle (LDP)** if there exists a rate function  $I:X\to [0,\infty]$  such that for every Borel set  $A\subset X$ ,

$$-\inf_{x\in\dot{A}}I(x)\leq \liminf_{n\to\infty}\frac{1}{n}\ln\mathbb{P}(Z_n\in A)\leq \limsup_{n\to\infty}\frac{1}{n}\ln\mathbb{P}(Z_n\in A)\leq -\inf_{x\in\overline{A}}I(x)$$

A sequence  $(Z_n)_{n\geq 1}$  of RV's on a topological space X satisfies the **Large Deviation Principle (LDP)** if there exists a rate function  $I:X\to [0,\infty]$  such that for every Borel set  $A\subset X$ ,

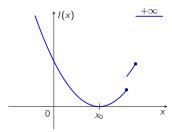
$$-\inf_{x\in A}I(x)\leq \liminf_{n\to\infty}\frac{1}{n}\ln\mathbb{P}\left(Z_n\in A\right)\leq \limsup_{n\to\infty}\frac{1}{n}\ln\mathbb{P}\left(Z_n\in A\right)\leq -\inf_{x\in \overline{A}}I(x)$$

Formally: 
$$\mathbb{P}(Z_n \approx x) \sim e^{-n I(x)}$$

A sequence  $(Z_n)_{n\geq 1}$  of RV's on a topological space X satisfies the **Large Deviation Principle (LDP)** if there exists a rate function  $I:X\to [0,\infty]$  such that for every Borel set  $A\subset X$ ,

$$-\inf_{x\in\dot{A}}I(x)\leq \liminf_{n\to\infty}\frac{1}{n}\ln\mathbb{P}(Z_n\in A)\leq \limsup_{n\to\infty}\frac{1}{n}\ln\mathbb{P}(Z_n\in A)\leq -\inf_{x\in\overline{A}}I(x)$$

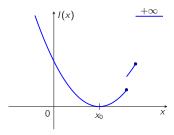
Formally:  $\mathbb{P}(Z_n \approx x) \sim e^{-nI(x)}$ 



A sequence  $(Z_n)_{n\geq 1}$  of RV's on a topological space X satisfies the **Large Deviation Principle (LDP)** if there exists a rate function  $I:X\to [0,\infty]$  such that for every Borel set  $A\subset X$ ,

$$-\inf_{x\in A}I(x)\leq \liminf_{n\to\infty}\frac{1}{n}\ln\mathbb{P}\left(Z_n\in A\right)\leq \limsup_{n\to\infty}\frac{1}{n}\ln\mathbb{P}\left(Z_n\in A\right)\leq -\inf_{x\in \overline{A}}I(x)$$

Formally:  $\mathbb{P}(Z_n \approx x) \sim e^{-nI(x)}$ 

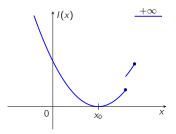


**Local LDP** on  $J \subset X$ : both bounds required only for  $A \subset J$ 

A sequence  $(Z_n)_{n\geq 1}$  of RV's on a topological space X satisfies the **Large Deviation Principle (LDP)** if there exists a rate function  $I:X\to [0,\infty]$  such that for every Borel set  $A\subset X$ ,

$$-\inf_{x\in A}I(x)\leq \liminf_{n\to\infty}\frac{1}{n}\ln\mathbb{P}\left(Z_n\in A\right)\leq \limsup_{n\to\infty}\frac{1}{n}\ln\mathbb{P}\left(Z_n\in A\right)\leq -\inf_{x\in \overline{A}}I(x)$$

Formally:  $\mathbb{P}(Z_n \approx x) \sim e^{-nI(x)}$ 



- **Local LDP** on  $J \subset X$ : both bounds required only for  $A \subset J$
- Weak LDP: lower bound for all A, upper bound for all precompact A

We would like an LDP for the empirical measures

$$\ell_n:=rac{1}{n}\sum_{k=0}^{n-1}\delta_{|\psi_k
angle}\in\mathcal{M}_1(\mathbf{P}(\mathbb{C}^d))$$
 (with the weak topology)

We would like an LDP for the empirical measures

$$\ell_n := rac{1}{n} \sum_{k=0}^{n-1} \delta_{\ket{\psi_k}} \in \mathcal{M}_1(\mathbf{P}(\mathbb{C}^d))$$
 (with the weak topology)

with some rate function  $\mathbb{I}: \mathcal{M}_1(\mathbf{P}(\mathbb{C}^d)) \to [0, \infty]$ , i.e.  $\mathbb{P}(\ell_n \approx \mu) \sim e^{-n \, \mathbb{I}(\mu)}$ 

We would like an LDP for the empirical measures

$$\ell_n := rac{1}{n} \sum_{k=0}^{n-1} \delta_{|\psi_k
angle} \in \mathcal{M}_1(\mathbf{P}(\mathbb{C}^d))$$
 (with the weak topology)

with some rate function  $\mathbb{I}: \mathcal{M}_1(\mathbf{P}(\mathbb{C}^d)) \to [0, \infty]$ , i.e.  $\mathbb{P}(\ell_n \approx \mu) \sim e^{-n\mathbb{I}(\mu)}$ 

**Corollary**: Fix  $g \in C(\mathbf{P}(\mathbb{C}^d))$ . Then

$$rac{1}{n}S_ng=\int gd\ell_n=\Psi_g(\ell_n), \quad \Psi_g\in C(\mathcal{M}_1(\mathbf{P}(\mathbb{C}^d)))$$

We would like an LDP for the empirical measures

$$\ell_n := rac{1}{n} \sum_{k=0}^{n-1} \delta_{|\psi_k\rangle} \in \mathcal{M}_1(\mathbf{P}(\mathbb{C}^d))$$
 (with the weak topology)

with some rate function  $\mathbb{I}: \mathcal{M}_1(\mathbf{P}(\mathbb{C}^d)) \to [0, \infty]$ , i.e.  $\mathbb{P}(\ell_n \approx \mu) \sim e^{-n \mathbb{I}(\mu)}$ 

**Corollary**: Fix  $q \in C(\mathbf{P}(\mathbb{C}^d))$ . Then

$$rac{1}{n}S_ng=\int gd\ell_n=\Psi_g(\ell_n), \quad \Psi_g\in C(\mathcal{M}_1(\mathbf{P}(\mathbb{C}^d)))$$

By the **contraction principle**: LDP for  $\frac{1}{n}S_ng$  with rate function

$$I(x) = \inf \left\{ \mathbb{I}(\mu) : \mu \in \mathcal{M}_1(\mathbf{P}(\mathbb{C}^d)), \int g d\mu = x \right\}$$

We would like an LDP for the empirical measures

$$\ell_n := rac{1}{n} \sum_{k=0}^{n-1} \delta_{|\psi_k
angle} \in \mathcal{M}_1(\mathbf{P}(\mathbb{C}^d))$$
 (with the weak topology)

with some rate function  $\mathbb{I}: \mathcal{M}_1(\mathbf{P}(\mathbb{C}^d)) \to [0, \infty]$ , i.e.  $\mathbb{P}(\ell_n \approx \mu) \sim e^{-n \mathbb{I}(\mu)}$ 

**Corollary**: Fix  $q \in C(\mathbf{P}(\mathbb{C}^d))$ . Then

$$rac{1}{n}S_ng=\int gd\ell_n=\Psi_g(\ell_n), \quad \Psi_g\in C(\mathcal{M}_1(\mathbf{P}(\mathbb{C}^d)))$$

By the **contraction principle**: LDP for  $\frac{1}{n}S_ng$  with rate function

$$I(x) = \inf \left\{ \mathbb{I}(\mu) : \mu \in \mathcal{M}_1(\mathbf{P}(\mathbb{C}^d)), \int g d\mu = x \right\}$$

Q: Under what assumptions?

We would like an LDP for the empirical measures

$$\ell_n := rac{1}{n} \sum_{k=0}^{n-1} \delta_{|\psi_k
angle} \in \mathcal{M}_1(\mathbf{P}(\mathbb{C}^d))$$
 (with the weak topology)

with some rate function  $\mathbb{I}: \mathcal{M}_1(\mathbf{P}(\mathbb{C}^d)) \to [0, \infty]$ , i.e.  $\mathbb{P}(\ell_n \approx \mu) \sim e^{-n \mathbb{I}(\mu)}$ 

**Corollary**: Fix  $g \in C(\mathbf{P}(\mathbb{C}^d))$ . Then

$$rac{1}{n}S_ng=\int gd\ell_n=\Psi_g(\ell_n), \quad \Psi_g\in C(\mathcal{M}_1(\mathbf{P}(\mathbb{C}^d)))$$

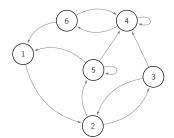
By the **contraction principle**: LDP for  $\frac{1}{n}S_ng$  with rate function

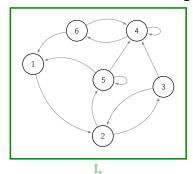
$$I(x) = \inf \left\{ \mathbb{I}(\mu) : \mu \in \mathcal{M}_1(\mathbf{P}(\mathbb{C}^d)), \int g d\mu = x \right\}$$

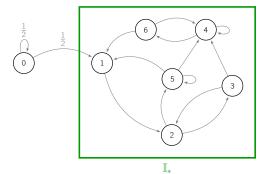
**Q**: Under what assumptions?

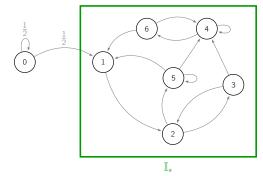
Q: What is I? Not the Donsker-Varadhan rate function

$$\mathbb{I}_{DV}(\mu) = \sup_{u \geq 1} \int_{\mathsf{P}(\mathbb{C}^d)} \mathsf{In}\left(\frac{u}{\mathsf{P}u}\right) d\mu$$

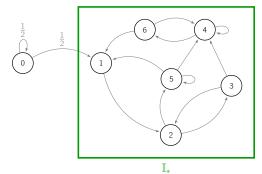








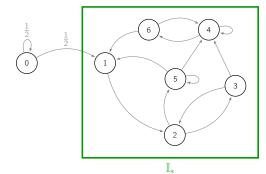
Initial measure  $\nu$ .  $\mathbb{P}(\ell_n \approx \mu) \sim e^{-n \mathbb{I}(\mu)}$ 



Initial measure  $\nu$ .  $\mathbb{P}(\ell_n \approx \mu) \sim e^{-n \mathbb{I}(\mu)}$ 

| $\nu(0)=0$        |                                                                              | $\nu(0) > 0$ |
|-------------------|------------------------------------------------------------------------------|--------------|
| $\mathbb{I}(\mu)$ | $(\mathbf{I}_*(\mu)  \text{if } \mu(0) = 0 \ +\infty  \text{if } \mu(0) > 0$ |              |

### A digression about transients and large deviations



Initial measure  $\nu$ .  $\mathbb{P}(\ell_n \approx \mu) \sim e^{-n \mathbb{I}(\mu)}$ 

| $\nu(0)=0$                                                              |                                                     | $\nu(0) > 0$                                                                                                                             |
|-------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbb{I}(\mu) = egin{cases} \mathbb{I}_*(\mu) \ +\infty \end{cases}$ | $ \text{if } \mu(0) = 0 $ $ \text{if } \mu(0) > 0 $ | $\begin{split} \mathbb{I}(\mu) &= \mu(0) \ln 2 + (1 - \mu(0))  \mathbb{I}_*(\mu _{\blacksquare}) \\ &= \mathbb{I}_{DV}(\mu) \end{split}$ |

Fix 
$$p \in (0, 1/2)$$
. Let  $r = \frac{1-p}{p} > 1$ . Let  $A = \{K, S\}$ 

Fix 
$$p \in (0, 1/2)$$
. Let  $r = \frac{1-p}{p} > 1$ . Let  $A = \{K, S\}$ 

$$V_K = egin{pmatrix} \sqrt{p} & 0 \\ 0 & \sqrt{1-p} \end{pmatrix} \qquad V_S = egin{pmatrix} 0 & \sqrt{p} \\ \sqrt{1-p} & 0 \end{pmatrix}$$

Fix 
$$p \in (0, 1/2)$$
. Let  $r = \frac{1-p}{p} > 1$ . Let  $A = \{K, S\}$ 

$$V_{\mathcal{K}} = \begin{pmatrix} \sqrt{p} & 0 \\ 0 & \sqrt{1-p} \end{pmatrix}$$
  $V_{\mathcal{S}} = \begin{pmatrix} 0 & \sqrt{p} \\ \sqrt{1-p} & 0 \end{pmatrix}$  (Prim)  $\checkmark$  (Pur)  $\checkmark$ 

Fix 
$$p \in (0, 1/2)$$
. Let  $r = \frac{1-p}{p} > 1$ . Let  $A = \{K, S\}$ 

$$V_{\mathcal{K}} = \begin{pmatrix} \sqrt{p} & 0 \\ 0 & \sqrt{1-p} \end{pmatrix}$$
  $V_{\mathcal{S}} = \begin{pmatrix} 0 & \sqrt{p} \\ \sqrt{1-p} & 0 \end{pmatrix}$  (Prim)  $\checkmark$  (Pur)  $\checkmark$ 

$$|\psi\rangle \propto \begin{pmatrix} x \\ y \end{pmatrix} \xrightarrow{K} V_K |\psi\rangle \propto \begin{pmatrix} \sqrt{px} \\ \sqrt{1-py} \end{pmatrix}$$

$$S \longrightarrow V_S |\psi\rangle \propto \begin{pmatrix} \sqrt{1-py} \\ \sqrt{px} \end{pmatrix}$$

Fix 
$$p \in (0, 1/2)$$
. Let  $r = \frac{1-p}{p} > 1$ . Let  $A = \{K, S\}$ 

$$V_{\mathcal{K}} = \begin{pmatrix} \sqrt{p} & 0 \\ 0 & \sqrt{1-p} \end{pmatrix}$$
  $V_{\mathcal{S}} = \begin{pmatrix} 0 & \sqrt{p} \\ \sqrt{1-p} & 0 \end{pmatrix}$  (Prim)  $\checkmark$  (Pur)  $\checkmark$ 

$$|\psi\rangle \propto \begin{pmatrix} x \\ y \end{pmatrix}$$
 $S$ 
 $V_K |\psi\rangle \propto \begin{pmatrix} \sqrt{p}x \\ \sqrt{1-p}y \end{pmatrix}$ 
 $V_S |\psi\rangle \propto \begin{pmatrix} \sqrt{1-p}y \\ \sqrt{p}x \end{pmatrix}$ 

Invariant measure:

$$u_{\mathrm{inv}} = p\delta_{|0\rangle} + (1-p)\delta_{|1\rangle} \in \mathcal{M}_1(\mathbf{P}(\mathbb{C}^2))$$

## Keep-Switch instrument

Fix 
$$p \in (0, 1/2)$$
. Let  $r = \frac{1-p}{p} > 1$ . Let  $A = \{K, S\}$ 

$$V_K = \begin{pmatrix} \sqrt{p} & 0 \\ 0 & \sqrt{1-p} \end{pmatrix}$$
  $V_S = \begin{pmatrix} 0 & \sqrt{p} \\ \sqrt{1-p} & 0 \end{pmatrix}$  (Prim)  $\checkmark$  (Pur)  $\checkmark$ 

$$|\psi\rangle \propto \begin{pmatrix} x \\ y \end{pmatrix} \underbrace{ \begin{pmatrix} K \\ Y \end{pmatrix} \times \begin{pmatrix} V_K |\psi\rangle \propto \begin{pmatrix} \sqrt{p}x \\ \sqrt{1-p}y \end{pmatrix}}_{S} \\ V_S |\psi\rangle \propto \begin{pmatrix} \sqrt{1-p}y \\ \sqrt{p}x \end{pmatrix}$$

Invariant measure:

$$u_{\mathrm{inv}} = p\delta_{|0\rangle} + (1-p)\delta_{|1\rangle} \in \mathcal{M}_1(\mathbf{P}(\mathbb{C}^2))$$

Invariant state for  $X \mapsto \Phi[X] = V_K X V_K^* + V_S X V_S^*$ :

#### Keep-Switch instrument

Fix 
$$p \in (0, 1/2)$$
. Let  $r = \frac{1-p}{p} > 1$ . Let  $A = \{K, S\}$ 

$$V_{\mathcal{K}} = \begin{pmatrix} \sqrt{p} & 0 \\ 0 & \sqrt{1-p} \end{pmatrix}$$
  $V_{\mathcal{S}} = \begin{pmatrix} 0 & \sqrt{p} \\ \sqrt{1-p} & 0 \end{pmatrix}$  (Prim)  $\checkmark$  (Pur)  $\checkmark$ 

$$|\psi\rangle \propto \begin{pmatrix} x \\ y \end{pmatrix} \xrightarrow{K} V_K |\psi\rangle \propto \begin{pmatrix} \sqrt{p}x \\ \sqrt{1-p}y \end{pmatrix}$$

$$S \longrightarrow V_S |\psi\rangle \propto \begin{pmatrix} \sqrt{1-p}y \\ \sqrt{p}x \end{pmatrix}$$

Invariant measure:

$$u_{\mathrm{inv}} = p\delta_{|0\rangle} + (1-p)\delta_{|1\rangle} \in \mathcal{M}_1(\mathbf{P}(\mathbb{C}^2))$$

Invariant state for  $X \mapsto \Phi[X] = V_K X V_K^* + V_S X V_S^*$ :

$$\rho_* = \begin{pmatrix} p & 0 \\ 0 & 1 - p \end{pmatrix}$$

### Keep–Switch instrument

Fix 
$$p \in (0, 1/2)$$
. Let  $r = \frac{1-p}{p} > 1$ . Let  $A = \{K, S\}$ 

$$V_{\mathcal{K}} = \begin{pmatrix} \sqrt{p} & 0 \\ 0 & \sqrt{1-p} \end{pmatrix}$$
  $V_{\mathcal{S}} = \begin{pmatrix} 0 & \sqrt{p} \\ \sqrt{1-p} & 0 \end{pmatrix}$  (Prim)  $\checkmark$  (Pur)  $\checkmark$ 

$$|\psi\rangle \propto \begin{pmatrix} x \\ y \end{pmatrix} \underbrace{ \begin{pmatrix} K \\ Y \end{pmatrix} \times \begin{pmatrix} V_K |\psi\rangle \propto \begin{pmatrix} \sqrt{p}X \\ \sqrt{1-p}y \end{pmatrix}}_{S} \\ V_S |\psi\rangle \propto \begin{pmatrix} \sqrt{1-p}y \\ \sqrt{p}X \end{pmatrix}$$

Invariant measure:

$$u_{\mathrm{inv}} = p\delta_{|0\rangle} + (1-p)\delta_{|1\rangle} \in \mathcal{M}_1(\mathbf{P}(\mathbb{C}^2))$$

Invariant state for  $X \mapsto \Phi[X] = V_K X V_K^* + V_S X V_S^*$ :

$$ho_* = egin{pmatrix} 
ho & 0 \ 0 & 1-
ho \end{pmatrix} = \int_{\mathsf{P}(\mathbb{C}^2)} |\psi
angle \langle \psi| d
u_{\mathrm{inv}}(|\psi
angle)$$

$$|\psi\rangle \propto \begin{pmatrix} x \\ y \end{pmatrix} \xrightarrow{K} V_K |\psi\rangle \propto \begin{pmatrix} \sqrt{p}x \\ \sqrt{1-p}y \end{pmatrix}$$

$$S \to V_S |\psi\rangle \propto \begin{pmatrix} \sqrt{1-p}y \\ \sqrt{p}x \end{pmatrix}$$

$$|\psi\rangle \propto \begin{pmatrix} x \\ y \end{pmatrix} \propto \begin{pmatrix} 1 \\ r^{\frac{z}{2} + \frac{1}{4}} e^{-i\varphi} \end{pmatrix} \xrightarrow{K} V_K |\psi\rangle \propto \begin{pmatrix} \sqrt{p}x \\ \sqrt{1-p}y \end{pmatrix} \propto \begin{pmatrix} 1 \\ r^{\frac{z+1}{2} + \frac{1}{4}} e^{-i\varphi} \end{pmatrix} \xrightarrow{S} V_S |\psi\rangle \propto \begin{pmatrix} \sqrt{1-p}y \\ \sqrt{p}x \end{pmatrix} \propto \begin{pmatrix} 1 \\ r^{\frac{-z}{2} + \frac{1}{4}} e^{i\varphi} \end{pmatrix}$$

$$|\psi\rangle \propto \begin{pmatrix} x \\ y \end{pmatrix} \propto \begin{pmatrix} 1 \\ r^{\frac{z}{2} + \frac{1}{4}} e^{-i\varphi} \end{pmatrix} \xrightarrow{K} V_K |\psi\rangle \propto \begin{pmatrix} \sqrt{px} \\ \sqrt{1-py} \end{pmatrix} \propto \begin{pmatrix} 1 \\ r^{\frac{z+1}{2} + \frac{1}{4}} e^{-i\varphi} \end{pmatrix} \xrightarrow{S} V_S |\psi\rangle \propto \begin{pmatrix} \sqrt{1-py} \\ \sqrt{px} \end{pmatrix} \propto \begin{pmatrix} 1 \\ r^{\frac{-z}{2} + \frac{1}{4}} e^{i\varphi} \end{pmatrix}$$

Fix  $\varphi = 0$ .

$$|\psi\rangle \propto \begin{pmatrix} x \\ y \end{pmatrix} \propto \begin{pmatrix} 1 \\ r^{\frac{z}{2} + \frac{1}{4}} \end{pmatrix} \xrightarrow{K} V_K |\psi\rangle \propto \begin{pmatrix} \sqrt{px} \\ \sqrt{1 - py} \end{pmatrix} \propto \begin{pmatrix} 1 \\ r^{\frac{z+1}{2} + \frac{1}{4}} \end{pmatrix}$$

$$S \to V_S |\psi\rangle \propto \begin{pmatrix} \sqrt{1 - py} \\ \sqrt{px} \end{pmatrix} \propto \begin{pmatrix} 1 \\ r^{\frac{-z}{2} + \frac{1}{4}} \end{pmatrix}$$

Fix  $\varphi = 0$ .

$$|\psi\rangle \propto \begin{pmatrix} x \\ y \end{pmatrix} \propto \begin{pmatrix} 1 \\ r^{\frac{z}{2}+\frac{1}{4}} \end{pmatrix} \xrightarrow{K} V_K |\psi\rangle \propto \begin{pmatrix} \sqrt{p}x \\ \sqrt{1-p}y \end{pmatrix} \propto \begin{pmatrix} 1 \\ r^{\frac{z+1}{2}+\frac{1}{4}} \end{pmatrix}$$

$$S \to V_S |\psi\rangle \propto \begin{pmatrix} \sqrt{1-p}y \\ \sqrt{p}x \end{pmatrix} \propto \begin{pmatrix} 1 \\ r^{\frac{-z}{2}+\frac{1}{4}} \end{pmatrix}$$

Fix  $\varphi = 0$ . Markov process on  $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ :

$$z \xrightarrow{K} z + 1$$
  $p_K(z) = \frac{p}{1 + r^{z+1/2}} + \frac{1 - p}{1 + r^{-z-1/2}}$   
 $p_S(z) = 1 - p_K(z)$ 

$$|\psi\rangle \propto \begin{pmatrix} x \\ y \end{pmatrix} \propto \begin{pmatrix} 1 \\ r^{\frac{z}{2}+\frac{1}{4}} \end{pmatrix} \xrightarrow{K} V_K |\psi\rangle \propto \begin{pmatrix} \sqrt{px} \\ \sqrt{1-py} \end{pmatrix} \propto \begin{pmatrix} 1 \\ r^{\frac{z+1}{2}+\frac{1}{4}} \end{pmatrix}$$

$$S \to V_S |\psi\rangle \propto \begin{pmatrix} \sqrt{1-py} \\ \sqrt{px} \end{pmatrix} \propto \begin{pmatrix} 1 \\ r^{\frac{-z}{2}+\frac{1}{4}} \end{pmatrix}$$

Fix  $\varphi = 0$ . Markov process on  $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ :

$$z \xrightarrow{K} z + 1 \qquad p_{K}(z) = \frac{p}{1+r^{z+1/2}} + \frac{1-p}{1+r^{-z-1/2}}$$

$$p_{S}(z) = 1 - p_{K}(z)$$

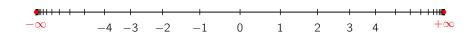
$$p_{S}(z) = 1 - p$$

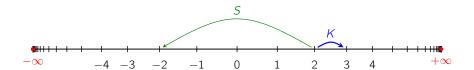
$$p_{S}(+\infty) = 1 - p$$

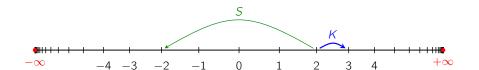
$$p_{S}(+\infty) = p$$

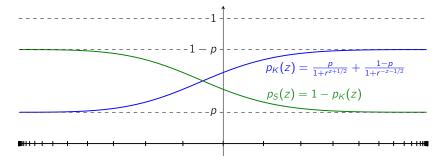
$$p_{S}(+\infty) = p$$

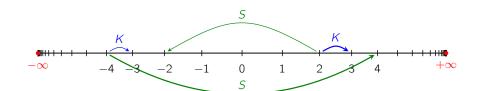
$$p_{S}(-\infty) = 1 - p$$

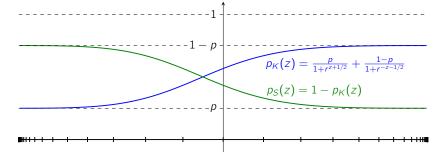


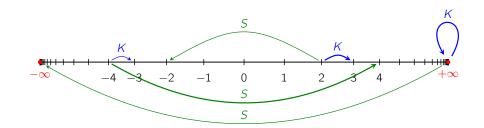


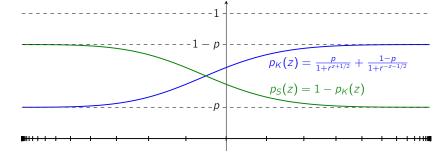


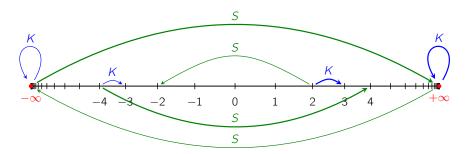


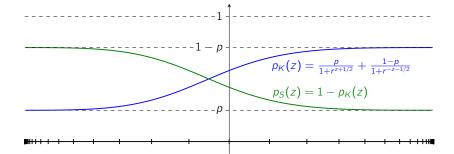


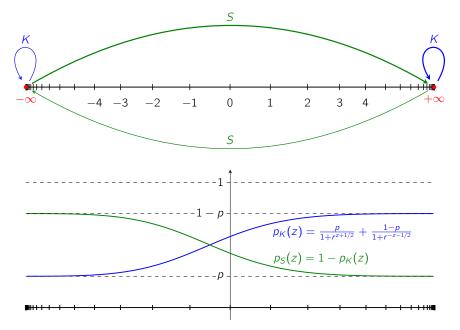


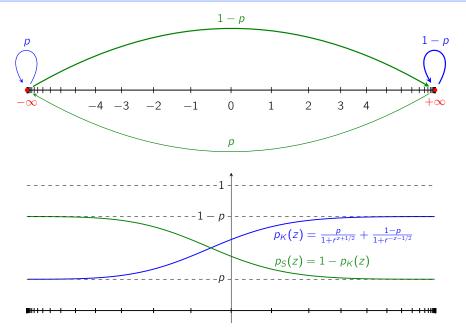




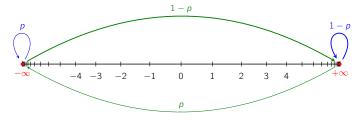






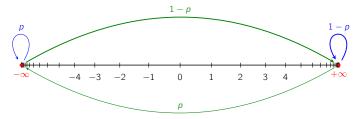


# Warm-up: large deviations on $\{-\infty, +\infty\}$



If the initial condition  $z_0$  is  $\pm \infty$ ,

# Warm-up: large deviations on $\{-\infty, +\infty\}$

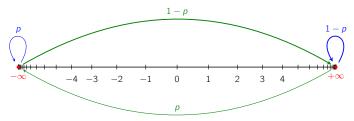


If the initial condition  $z_0$  is  $\pm \infty$ ,

■ LDP on  $\mathcal{M}_1(\{-\infty, +\infty\})$  with rate function

$$S(\mu|
u_{ ext{inv}}) := \mu(-\infty) \ln rac{\mu(-\infty)}{
ho} + \mu(+\infty) \ln rac{\mu(+\infty)}{1-
ho}$$

# Warm-up: large deviations on $\{-\infty, +\infty\}$



If the initial condition  $z_0$  is  $\pm \infty$ ,

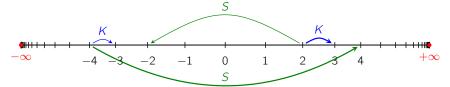
■ LDP on  $\mathcal{M}_1(\{-\infty, +\infty\})$  with rate function

$$S(\mu|
u_{ ext{inv}}) := \mu(-\infty) \ln rac{\mu(-\infty)}{p} + \mu(+\infty) \ln rac{\mu(+\infty)}{1-p}$$

■ LDP on  $\mathcal{M}_1(\overline{\mathbb{R}})$  with rate function

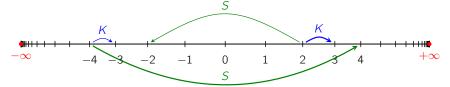
$$\mathbb{I}_{\infty}(\mu) = \begin{cases} S(\mu|\nu_{\text{inv}}) & \text{if } \mu(\{-\infty, +\infty\}) = 1, \\ +\infty & \text{otherwise} \end{cases}$$

### Large deviations away from $\pm \infty$



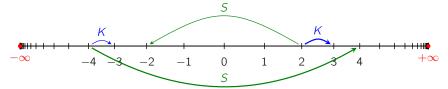
For  $z_0 \in \mathbb{R}$ , the set  $S_{z_0} := \{z_0, -z_0\} + \mathbb{Z}$  is invariant. The chain on  $S_{z_0}$  is irreducible.

#### Large deviations away from $\pm \infty$



For  $z_0 \in \mathbb{R}$ , the set  $S_{z_0} := \{z_0, -z_0\} + \mathbb{Z}$  is invariant. The chain on  $S_{z_0}$  is irreducible. For simplicity take  $z_0 \in \mathbb{Z}$ , so  $S_{z_0} = \mathbb{Z}$ 

#### Large deviations away from $\pm \infty$



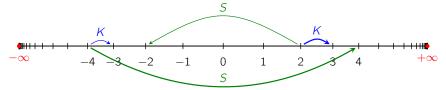
For  $z_0 \in \mathbb{R}$ , the set  $S_{z_0} := \{z_0, -z_0\} + \mathbb{Z}$  is invariant. The chain on  $S_{z_0}$  is irreducible. For simplicity take  $z_0 \in \mathbb{Z}$ , so  $S_{z_0} = \mathbb{Z}$ 

■ Weak LDP on  $\mathcal{M}_1(\mathbb{Z})$  with rate function

$$\mathbb{I}_{\mathbb{Z}}(\mu) = \mathbb{I}_{DV}(\mu) = \sup_{u \ge 1} \sum_{i \in \mathbb{Z}} \ln \left( \frac{u(i)}{Pu(i)} \right) \mu(i)$$

See Donsker-Varadhan '75-'76, Daures '25

#### Large deviations away from $\pm \infty$



For  $z_0 \in \mathbb{R}$ , the set  $S_{z_0} := \{z_0, -z_0\} + \mathbb{Z}$  is invariant. The chain on  $S_{z_0}$  is irreducible. For simplicity take  $z_0 \in \mathbb{Z}$ , so  $S_{z_0} = \mathbb{Z}$ 

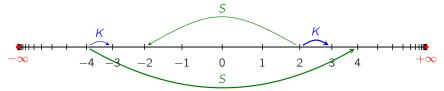
■ Weak LDP on  $\mathcal{M}_1(\mathbb{Z})$  with rate function

$$\mathbb{I}_{\mathbb{Z}}(\mu) = \mathbb{I}_{DV}(\mu) = \sup_{u \ge 1} \sum_{i \in \mathbb{Z}} \ln \left( \frac{u(i)}{Pu(i)} \right) \mu(i)$$

See Donsker-Varadhan '75-'76, Daures '25

- Dilemma:
  - ightharpoonup On  $\mathbb{Z}$ : the theory only gives a weak LDP

### Large deviations away from $\pm \infty$



For  $z_0 \in \mathbb{R}$ , the set  $S_{z_0} := \{z_0, -z_0\} + \mathbb{Z}$  is invariant. The chain on  $S_{z_0}$  is irreducible. For simplicity take  $z_0 \in \mathbb{Z}$ , so  $S_{z_0} = \mathbb{Z}$ 

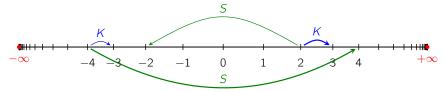
■ Weak LDP on  $\mathcal{M}_1(\mathbb{Z})$  with rate function

$$\mathbb{I}_{\mathbb{Z}}(\mu) = \mathbb{I}_{DV}(\mu) = \sup_{u \ge 1} \sum_{i \in \mathbb{Z}} \ln \left( \frac{u(i)}{Pu(i)} \right) \mu(i)$$

See Donsker-Varadhan '75-'76, Daures '25

- Dilemma:
  - ightharpoonup On  $\mathbb{Z}$ : the theory only gives a weak LDP
  - ▶ On  $\overline{\mathbb{Z}} = \mathbb{Z} \cup \{-\infty, +\infty\}$ : no classical theory because not irreducible

### Large deviations away from $\pm \infty$



For  $z_0 \in \mathbb{R}$ , the set  $S_{z_0} := \{z_0, -z_0\} + \mathbb{Z}$  is invariant. The chain on  $S_{z_0}$  is irreducible. For simplicity take  $z_0 \in \mathbb{Z}$ , so  $S_{z_0} = \mathbb{Z}$ 

■ Weak LDP on  $\mathcal{M}_1(\mathbb{Z})$  with rate function

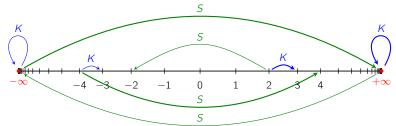
$$\mathbb{I}_{\mathbb{Z}}(\mu) = \mathbb{I}_{DV}(\mu) = \sup_{u \ge 1} \sum_{i \in \mathbb{Z}} \ln \left( \frac{u(i)}{Pu(i)} \right) \mu(i)$$

See Donsker-Varadhan '75-'76, Daures '25

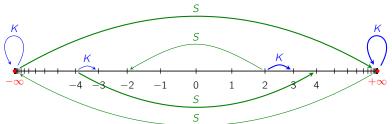
#### Dilemma:

- ightharpoonup On  $\mathbb{Z}$ : the theory only gives a weak LDP
- ▶ On  $\overline{\mathbb{Z}} = \mathbb{Z} \cup \{-\infty, +\infty\}$ : no classical theory because not irreducible
- ightharpoonup On  $\overline{\mathbb{R}}$ : even less irreducible

## Mixing the two

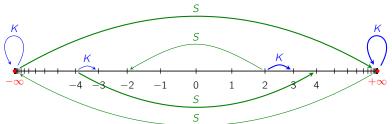


**Theorem**. Benoist, C, Pellegrini, Petit, 2025. If  $z_0 \in \mathbb{Z}$ , then LDP on  $\mathcal{M}_1(\overline{\mathbb{R}})$ , i.e.  $\mathbb{P}(\ell_n \approx \mu) \sim e^{-n\mathbb{I}(\mu)}$ ,



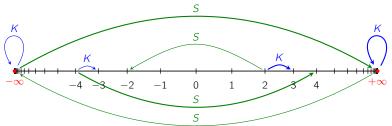
**Theorem**. Benoist, C, Pellegrini, Petit, 2025. If  $z_0 \in \mathbb{Z}$ , then LDP on  $\mathcal{M}_1(\overline{\mathbb{R}})$ , i.e.  $\mathbb{P}(\ell_n \approx \mu) \sim e^{-n\mathbb{I}(\mu)}$ , with rate

$$\mathbb{I}(\mu) = egin{cases} \mathbb{I}_{DV}(\mu) & ext{if ???} \\ +\infty & ext{otherwise} \end{cases}$$



**Theorem**. Benoist, C, Pellegrini, Petit, 2025. If  $z_0 \in \mathbb{Z}$ , then LDP on  $\mathcal{M}_1(\overline{\mathbb{R}})$ , i.e.  $\mathbb{P}(\ell_n \approx \mu) \sim e^{-n\mathbb{I}(\mu)}$ , with rate

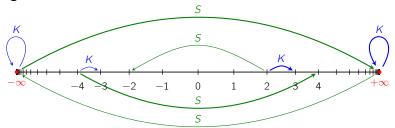
$$\mathbb{I}(\mu) = \begin{cases} \mathbb{I}_{DV}(\mu) & \text{if } \mu(\overline{\mathbb{Z}}) = 1\\ +\infty & \text{otherwise} \end{cases}$$



**Theorem**. Benoist, C, Pellegrini, Petit, 2025.

If  $z_0 \in \mathbb{Z}$ , then LDP on  $\mathcal{M}_1(\overline{\mathbb{R}})$ , i.e.  $\mathbb{P}(\ell_n \approx \mu) \sim e^{-n\mathbb{I}(\mu)}$ , with rate

$$\mathbb{I}(\mu) = \begin{cases} \mathbb{I}_{DV}(\mu) & \text{if } \mu(\overline{\mathbb{Z}}) = 1 \text{ and } \mu(+\infty) \ge \mu(-\infty) \\ +\infty & \text{otherwise} \end{cases}$$



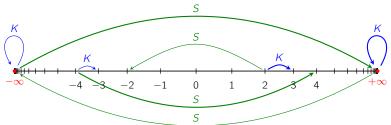
**Theorem**. Benoist, C, Pellegrini, Petit, 2025.

If  $z_0 \in \mathbb{Z}$ , then LDP on  $\mathcal{M}_1(\overline{\mathbb{R}})$ , i.e.  $\mathbb{P}(\ell_n \approx \mu) \sim e^{-n\mathbb{I}(\mu)}$ , with rate

$$\mathbb{I}(\mu) = \begin{cases} \mathbb{I}_{DV}(\mu) & \text{if } \mu(\overline{\mathbb{Z}}) = 1 \text{ and } \mu(+\infty) \ge \mu(-\infty) \\ +\infty & \text{otherwise} \end{cases}$$

**Note**: If  $\mu(\{-\infty, +\infty\}) = 1$  and  $\mu(+\infty) < \mu(-\infty)$  then  $\mathbb{I}(\mu) \neq \mathbb{I}_{\infty}(\mu)!$ 

## Mixing the two



**Theorem**. Benoist, C, Pellegrini, Petit, 2025.

If  $z_0 \in \mathbb{Z}$ , then LDP on  $\mathcal{M}_1(\overline{\mathbb{R}})$ , i.e.  $\mathbb{P}(\ell_n \approx \mu) \sim e^{-n\mathbb{I}(\mu)}$ , with rate

$$\mathbb{I}(\mu) = \begin{cases} \mathbb{I}_{DV}(\mu) & \text{if } \mu(\overline{\mathbb{Z}}) = 1 \text{ and } \mu(+\infty) \ge \mu(-\infty) \\ +\infty & \text{otherwise} \end{cases}$$

**Note**: If  $\mu(\{-\infty, +\infty\}) = 1$  and  $\mu(+\infty) < \mu(-\infty)$  then  $\mathbb{I}(\mu) \neq \mathbb{I}_{\infty}(\mu)!$ 

**Actually**, LDP for any  $z_0 \in \overline{\mathbb{R}}$ , but **NOT** for random initial conditions!

# Thank you!

# Thank you!