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Typical physical setup
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Study the fluctuations of heat or entropy production.

H=He+Hy+V.

ep = %JQc + %JQh > 0.
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Classical stochastic thermodynamics definitions

Phase space: X,
Dynamics: (¢%)¢, ¢ : X — X,

e Entropy observable: X 5 x — — log p(x) with p a reference probability density
p(x) o< exp(—Bche(x) — Bphn(x))-

e Entropy production rate: 0 = —9 logp o ¢~ |0,

e Entropy production: AS; = fot co¢p °ds = —logpodt+ logp.
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Evans-Searles vs. Gallavotti-Cohen

Evans-Searles:

Fesalo) = [ e 2%p(ax= [ o000 (.

with p_y = po ¢~ L.

Gallavotti-Cohen:
NESS: pt = limt— oo % fotpo ¢°ds.

Focalo) = [ e 85tpu (= [ 5= ()0 (s ()
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Fluctuation relation

If ¢t and p are time reversal invariant:
-FES,t(CV) = -FES,t(l —a).
Equivalent to
Probabgs(AS: = —s) = e~ Probabgs(AS: = s).

In general

Fec,t(a) # Foc,i(1 — o).

Large deviation level
Under strict regularity conditions on ¢:

im i = lim 1 _
Jim_ £ log Foct(a) = lim £ log Fec (1 = a).

Actually,
i 4 e
Jim ¢ log Foc,e(a) = lim 3 log Fes i(a).

This is the Principle of Regular Entropic Fluctuations (PREF).
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Quantum stochastic thermodynamics

e Hilbert space: H,

Dynamics: (U?): unitary group (Ut = e~ /tH),

Entropy observable: —log p with p a reference state

p < exp(—LBcHe — BnHp).

e Entropy production rate: o = —i[H, log p]?
e Entropy production: AS; = fot U—SoU%ds = —U " tlog pU* + log p?

Issues:

e No clear physical interpretation of the measurement of AS;,
e Continuous measurement of o can lead to Zeno effect,

e No fluctuation relation except in few trivial cases.
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Two time measurement definition

Interpret the formula F(a) = fX p%p~“dr as measurements at the end and

beginning.
—logp = Z ePe.
e

1. Start in a state v and measure — log p obtaining result e,
v~ PevPe/tr(Perv), Probab(e|v) = tr(Pev),
2. Let evolve with U,
PevPe/ tr(Pev) ~ U'PevPe/ tr(Pev) U™ T,
3. Measure — log p, obtaining €’,
Probab(e’|v, e, t) = tr(Pe U*PevPe U™ ") / tr(Pev).

As a result:
Probab, +(AS; =s) = »  tr(PsU'PeU™Y)

e/ —e=s

= Z PevPe.
e

with
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Two time measurement definition

Let,
Fut(a) = tr(p2,p° )

with p_ = U~ tpU?t and
—i0

with cg =p'%up the modular dynamic of p.

Bruneau-Panati formula:
1 /P8 g
Fue(a) = lim 7/ vos,([Dp-¢: Dpla)do.
R—oo R 0

Connes’ cocycle: [Dv : Dpla : O — v¥p~*0p~%p* = v%p~ 0.

e Clear physical interpretation,
e Automatic fluctuation relation when v = p (Evans-Searles),

e |t makes sense in the thermodynamic limit even for v # p.
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Two time measurement definition: Thermodynamic limit

Observable C*-algebra: O,

Dynamic: (7%)¢ group of s-automorphism of O, d:7t = 7t o (8¢ + 5, + i[V, ]),
Veo,

e Free dynamic: (7}):, 07} = 7k o (8¢ + 6p),
e Reference state: po71f =p, pr =portt,

e Under standard assumptions, [Dp_; : Dp]o € O.
Assuming
i R e
Foi(a) = RIi_)moo E/o vo gp([Dp,t : Dpla)do
exists, it is the Laplace transform of the probability measure

Probab, :(|AS: — s| < ¢).
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Two time measurement definition: Thermodynamic limit

Assume v is a thermodynamic limit: v = lim; o ;.

Theorem (B., Bruneau, Jaksi¢, Panati, Pillet 2024
Under standard assumptions, for any v < p, Fu. +(«) is well defined and

lim Fy, t(a) = Fue(a).

L—oo
v < p means it is a weak® limit of p(A* - A), A€ O.

If v+ Fu ¢ is weak™ continuous, by density of p-normal states, F, ; extended to any
state v by continuity.
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Super stability of the the two time measurement definition

Theorem (B., Bruneau, Jaksi¢, Panati, Pillet 2024)
Assume g, is ergodic, then for any state v,

fy,t(a) = fp,t(a).

Assume O = Os ® Og with Os finite dimensional, T},  : Or — Og ergodic and
p x tr ®pgr, then,
Fui(a) = Fusopp(a)

with vs = v|os. If vs > 0, there exists C > 0 such that for a real,

CT'Fut(@) < Fpe(a) < CFue(a).

Remark
The decoherence due to the first — log p measurement forces the initial state back to

the reference state.

Assumption of perfect measurement implies its timescale is at least similar to the
return to equilibrium time scale.
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Principle of Regular Entropic Fluctuations (PREF)

Let « real be such that lim¢— oo % log Fp,t () exists.

Corollary
If pr,s >0, then

P U
tlrgo 2 log For t(a) = tIer;O 2 log Fp,e(a).

Assume moreover that py = lim7_, o, pT exists.

Corollary
If P+,5 > 0,

lim lim LllogF a)= lim lim llogF,. +(a).
Lmom g For,t(c) A [ g For.t(a)

Remark
Evans-Searles and Gallavotti-Cohen versions of fluctuation relation are equivalent. The

PREF holds trivially due to the strong decoherence/return to equilibrium effect of the
first measurement of — log p.
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Two-time measurement issues

e Trivializes the thermodynamic,
e Invasive extended infinitely precise measurement,

e Experimentally inaccessible.

Idea: perform a physical Fourier transform.
Initial idea in 2011 by Jaksi¢ and Pillet in private communications. Emerged
independently in physics in 2014 (see De Chiara et al. 2018 for a review).
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A toy example of physical Fourier transform

Observable O probability distribution P, o and Fourier transform

Fu0 0 /efo‘odPl,yo(o)‘
Goal: Sample F, o.
Procedure:
1. Adding a gbit: H ~ H ® C?,

1 1

3. Let the system and qgbit interact for time ia with interaction Hamiltonian O ® o:

1 1
2. Initialize the gbit: v ~ v ® p,, where p, = % < )

pa(a) = try[e™ 2092 (v @ p,)e 2 OP].

pale) = (71 d ""1’(“)) ,

Then,

2 fu,O(a)
4. Tomography of pa(a) ~» F,, o(a) sampling,

5. Repeating for several a and an inverse Fourier transform gives P, o.
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Ancilla tomography for entropic fluctuations

Physical Fourier transform corresponding to measurement~-evolution~~measurement.
o pa(t,@) = tr[Ue(a) (v ® pa) Ue(c)*] with
Ut(a) _ e% log pRo (Ut ® lcz) e—% Iogp(X)az7

(] pa(t, Oc) = % (ﬁ(a) gl/,;-(a)) .

Remarks
Ifv=p, Got=Fpyt.

Not true if v # p. Gu+ may not even be the Fourier transform of a probability

measure.

The interaction log p ® o, is non local. Does it make sense in the thermodynamic
limit?
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Thermodynamic limit

Ut(e) = exp(—it(He ® 1co + Hp ® 1cz + e~ 5 9EP872(V @ 15)e % 8 p®0r)),
Ut(ar) ~ 7L, a group of x-automorphism of O,

ot =78 (65 Q1y, +0, @1y, +i [%g;f“(V) ® Po + %g,ga(\/) ® Py, D
s'p_m(V) € O (quasi-)local,

pa(t7 a) =V ®pao T(;IMZ(C).

Proposition

— 1 1 gu,t(a)
pa(t, OL) = 5 (m 1 >

with Gy,t(a) = v([Dp—¢ : Dpl% »[Dp—t - Dpla2).-
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Ancilla tomography

If v=0p, Gpt(a) = Fp,t(a)

If v # p, the function G, ; may be a Fourier transform,

e But is not necessarily the characteristic function of a random variable,

o (71): differs from (7%): only through the local ancilla-system interaction.
Questions:

e |s this method of estimation stable with respect to initial time?
e What can we say when v = p,.?7

e Do we have PREF?

Definition
The PREF holds for G if

lim _lim %Iogng,t(a) = Tlim lim %Ioggpr,t(oa)

t—o00 T— oo — 00 t—00

for o in a real neighborhood of 0.
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Ancilla tomography stability

Theorem (B., Bruneau, Jaksi¢, Panati, Pillet 2024)
There exist C > 0 such that, for any T > 0 and « in a real neighborhood of 0,

C T Gpr,t(a) < Fpe(a) < CTGpr e(a).
So that, for all T > 0,
| |
tl_l)rr;o 2 logGpr t(a) = tl_l)rr;o 2 log Fp ¢
Moreover, for some paradigmatic models

lim lim Lllo a)= lim lim Lo Q).
t—00 T—ooo t ggPTat( ) T oo t—oo t gngit( )

Hence, the PREF holds and

lim lim Lllo o) = lim llog F, +(a).
Al gGpr.t(a) A7 p.t(c)

The second part is proved under the standard hypotheses of the Liouvillean spectral
(resonances) approach to existence and uniqueness of NESS (developed at the end of
the 90’s and in the 2000’s).

Typically applies to the spin-fermion model for a high enough temperature and small
enough ||V||. Also, o — ¢/*(V') has to be analytic in a neighborhood of 0 (UV
regularity). 1827



GNS representation

Let (h, 7, Q) be the GNS representation of (O, p).

Let A and J be the associated modular operator and modular conjugation:
JA,%)N'(A)Q =7(A")Q.
Liouvilean formulation of the evolution: L:$H — $, L* =L, JL= —LJ and
n(rt(A)) = etlr(A)e it
for any A€ O. Similarly, Ly = Ly, JLg = —LgJ

7 (th(A)) = e’-tL"ﬂ(A)ef"th'.
L=1Lg+n(V)—Jrn(V)J.
Actually, VW € O such that W = W*,

eit(L+J7r(W)J)W(A)efit(LJrJTr(W)J) — W(Tt(A)).
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Liouvilean expressions for 7 and G

Two one parameter families of Liouvilleans:
e Forany A € O, ©(1t(A)) = e'ttem(A)e~ e with
Lo = L—Jm(V)J+ In(s, (V))J

Remark that Ly = L,
o La=20,"Ly/, 05", o

Lo = L—a(V) + Ja(V)J + (552 (V) = In(s, 72 (v))y

Proposition
]:p,t(a) = (Qv eitL1/27aQ>1

Gpr e(a) = (@, eTr2¢itaq).

It remains to analyse the spectrum of these Liouvilleans.
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Spectral theory: Analytic deformation

On $, the spectrum of L has no gap. But there exist (S?)gcc in £(h) such that
S90=Q and Lp(0)=5LsS0 =Lg+ 60N

and

spec Ly C R, specLg(0) = spec([Hsys.,]) U (ON™ + R).
On D = Njtmp|<, Dom S% a gap opens between the discrete and essential spectrum
for Lg(0).

Then, using
La(0) =S%L057% = Lg + ON + AW(a, 0)

and perturbation theory in (6, \), the gap remains open.

Imz
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Simplicity from perturbation theory

From the weak coupling limit (Davies Lindbladian), for A small enough, the
dominating eigenvalue of S?L,S? is simple and purely imaginary. A similar
argument yields the same for L.

Imz
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Hence, for « real, both L, and Za have some simple purely imaginary resonances,
E(a) and E(«) respectively, dominating their spectrum.

22/27



Limit CGF for two-time measurement

There exist v > 0 such that,
<Q, e[tL1/2709> _ <97 eitLl/Z*“(g)fD _ Ceité‘(l/2—o¢) + O(et(lm(S(l/Q—(x)—ﬂ/)))_

Hence,
tl_l}ng() % log Fi(a) = iE(1/2 — a).
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Limit CGF and PREF for ancilla tomography

Gpr.e(a) = (2, oftl1/2 eitz(Y Q) = (Q, e"le/z(e)eifza(g)Q>.

Hence, ~
lim Gor,e(@) = (Q, X(a, 0)eta0) Q).
T—oo

It follows that, there exist v > 0 such that,

lim Gpy.(e) = e€(@) 4 O(et(mE() =),
T—o0 :

Then £(1/2 — o) = E(a) yields the theorem.
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For two time measurement definition of entropy fluctuations:

e Direct measurement implies PREF and stability by thermodynamic trivialization,

e Ancilla tomography is stable (under UV assumptions) and under standard
spectral assumptions, PREF holds.

e However ancilla does not provide access to each fluctuation individualy.
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Some open questions

e Proof of PREF using the scattering approach (asymptotic abelianess, XY-model,
Electronic Black Box...)?

e Taking into account imperfect measurements of — log p and check the
consistency of a perfect measurement limit?

e Other definitions of stochastic entropy production? Continuous measurement in a
non-Markovian setting?
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Thank you!
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