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Typical physical setup

Study the fluctuations of heat or entropy production.

H = Hc + Hh + V .

ep = 1
Tc

JQc + 1
Th

JQh
≥ 0.
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Classical stochastic thermodynamics definitions

• Phase space: X ,

• Dynamics: (ϕt)t , ϕt : X → X ,

• Entropy observable: X ∋ x 7→ − log ρ(x) with ρ a reference probability density

ρ(x) ∝ exp(−βchc (x)− βhhh(x)).

• Entropy production rate: σ = −∂t log ρ ◦ ϕ−t |t=0,

• Entropy production: ∆St =
∫ t
0 σ ◦ ϕ−sds = − log ρ ◦ ϕ−t + log ρ.
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Evans-Searles vs. Gallavotti-Cohen

Evans-Searles:

FES,t(α) =

∫
X

e−α∆St ρ(x)dx =

∫
X

ρ1−α(x)ρα−t(x)dx .

with ρ−t = ρ ◦ ϕ−t .

Gallavotti-Cohen:

NESS: ρ+ = limt→∞
1
t

∫ t
0 ρ ◦ ϕsds.

FGC ,t(α) =

∫
X

e−α∆St ρ+(x)dx =

∫
X

ρ−α(x)ρα−t(x)ρ+(x)dx .
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Fluctuation relation

If ϕt and ρ are time reversal invariant:

FES,t(α) = FES,t(1− α).

Equivalent to

ProbabES (∆St = −s) = e−st ProbabES (∆St = s).

In general

FGC ,t(α) ̸= FGC ,t(1− α).

Large deviation level

Under strict regularity conditions on ϕ:

lim
t→∞

1
t
logFGC ,t(α) = lim

t→∞
1
t
logFGC ,t(1− α).

Actually,

lim
t→∞

1
t
logFGC ,t(α) = lim

t→∞
1
t
logFES,t(α).

This is the Principle of Regular Entropic Fluctuations (PREF).
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Quantum stochastic thermodynamics

• Hilbert space: H,

• Dynamics: (Ut)t unitary group (Ut = e−itH),

• Entropy observable: − log ρ with ρ a reference state

ρ ∝ exp(−βcHc − βhHh).

• Entropy production rate: σ = −i [H, log ρ]?

• Entropy production: ∆St =
∫ t
0 U−sσUsds = −U−t log ρUt + log ρ?

Issues:

• No clear physical interpretation of the measurement of ∆St ,

• Continuous measurement of σ can lead to Zeno effect,

• No fluctuation relation except in few trivial cases.
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Two time measurement definition

Interpret the formula F(α) =
∫
X ρα−tρ

−αdν as measurements at the end and

beginning.

− log ρ =
∑
e

ePe .

1. Start in a state ν and measure − log ρ obtaining result e,

ν ⇝ PeνPe/ tr(Peν), Probab(e|ν) = tr(Peν),

2. Let evolve with Ut ,

PeνPe/ tr(Peν)⇝ UtPeνPe/ tr(Peν)U
−t ,

3. Measure − log ρ, obtaining e′,

Probab(e′|ν, e, t) = tr
(
Pe′U

tPeνPeU
−t

)
/ tr(Peν).

As a result:

Probabν,t(∆St = s) =
∑

e′−e=s

tr
(
Pe′U

tPe ν̃U
−t

)
with

ν̃ =
∑
e

PeνPe .
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Two time measurement definition

Let,

Fν,t(α) = tr
(
ρα−tρ

αν̃
)

with ρ−t = U−tρUt and

ν̃ = lim
R→∞

1

R

∫ R

0
ςθρ (ν)dθ

with ςθρ = ρiθνρ−iθ the modular dynamic of ρ.

Bruneau-Panati formula:

Fν,t(α) = lim
R→∞

1

R

∫ R

0
ν ◦ ςθρ ([Dρ−t : Dρ]α)dθ.

Connes’ cocycle: [Dν : Dρ]α : O 7→ ναρ−αOρ−αρα = ναρ−αO.

• Clear physical interpretation,

• Automatic fluctuation relation when ν = ρ (Evans-Searles),

• It makes sense in the thermodynamic limit even for ν ̸= ρ.
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Two time measurement definition: Thermodynamic limit

• Observable C∗-algebra: O,

• Dynamic: (τ t)t group of ∗-automorphism of O, ∂tτ t = τ t ◦ (δc + δh + i [V , ·]),
V ∈ O,

• Free dynamic: (τ tfr )t , ∂tτ
t
fr = τ tfr ◦ (δc + δh),

• Reference state: ρ ◦ τ tfr = ρ, ρt = ρ ◦ τ t ,

• Under standard assumptions, [Dρ−t : Dρ]α ∈ O.

Assuming

Fν,t(α) = lim
R→∞

1

R

∫ R

0
ν ◦ ςθρ ([Dρ−t : Dρ]α)dθ

exists, it is the Laplace transform of the probability measure

Probabν,t(|∆St − s| ≤ ε).
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Two time measurement definition: Thermodynamic limit

Assume ν is a thermodynamic limit: ν = limL→∞ νL.

Theorem (B., Bruneau, Jakšić, Panati, Pillet 2024)
Under standard assumptions, for any ν ≪ ρ, Fν,t(α) is well defined and

lim
L→∞

FνL,t(α) = Fν,t(α).

ν ≪ ρ means it is a weak∗ limit of ρ(A∗ · A), A ∈ O.

If ν 7→ Fν,t is weak∗ continuous, by density of ρ-normal states, Fν,t extended to any

state ν by continuity.
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Super stability of the the two time measurement definition

Theorem (B., Bruneau, Jakšić, Panati, Pillet 2024)
Assume ςρ is ergodic, then for any state ν,

Fν,t(α) = Fρ,t(α).

Assume O = OS ⊗OR with OS finite dimensional, τ tfr,R : OR → OR ergodic and

ρ ∝ tr⊗ρR , then,

Fν,t(α) = FνS⊗ρR (α)

with νS = ν|OS
. If νS > 0, there exists C > 0 such that for α real,

C−1Fν,t(α) ≤ Fρ,t(α) ≤ CFν,t(α).

Remark
The decoherence due to the first − log ρ measurement forces the initial state back to

the reference state.

Assumption of perfect measurement implies its timescale is at least similar to the

return to equilibrium time scale.
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Principle of Regular Entropic Fluctuations (PREF)

Let α real be such that limt→∞
1
t
logFρ,t(α) exists.

Corollary
If ρT ,S > 0, then

lim
t→∞

1
t
logFρT ,t(α) = lim

t→∞
1
t
logFρ,t(α).

Assume moreover that ρ+ = limT→∞ ρT exists.

Corollary
If ρ+,S > 0,

lim
t→∞

lim
T→∞

1
t
logFρT ,t(α) = lim

T→∞
lim

t→∞
1
t
logFρT ,t(α).

Remark
Evans-Searles and Gallavotti-Cohen versions of fluctuation relation are equivalent. The

PREF holds trivially due to the strong decoherence/return to equilibrium effect of the

first measurement of − log ρ.
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Two-time measurement issues

• Trivializes the thermodynamic,

• Invasive extended infinitely precise measurement,

• Experimentally inaccessible.

Idea: perform a physical Fourier transform.

Initial idea in 2011 by Jakšić and Pillet in private communications. Emerged

independently in physics in 2014 (see De Chiara et al. 2018 for a review).
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A toy example of physical Fourier transform

Observable O probability distribution Pν,O and Fourier transform

Fν,O : α 7→
∫

e−αodPν,O(o).

Goal: Sample Fν,O .

Procedure:

1. Adding a qbit: H⇝ H⊗ C2,

2. Initialize the qbit: ν ⇝ ν ⊗ ρa, where ρa = 1
2

Ç
1 1

1 1

å
,

3. Let the system and qbit interact for time iα with interaction Hamiltonian O ⊗ σz :

ρa(α) = trH[e−
α
2
O⊗σz (ν ⊗ ρa)e

α
2
O⊗σz ].

Then,

ρa(α) =
1

2

Ç
1 Fν,O(α)

Fν,O(α) 1

å
,

4. Tomography of ρa(α)⇝ Fν,O(α) sampling,

5. Repeating for several α and an inverse Fourier transform gives Pρ,O .
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Ancilla tomography for entropic fluctuations

Physical Fourier transform corresponding to measurement⇝evolution⇝measurement.

• ρa(t, α) = trH[Ut(α)(ν ⊗ ρa)Ut(α)∗] with

Ut(α) = e
α
2

log ρ⊗σz (Ut ⊗ 1C2 ) e−
α
2

log ρ⊗σz ,

• ρa(t, α) =
1
2

Ç
1 Gν,t(α)

Gν,t(α) 1

å
.

Remarks
If ν = ρ, Gρ,t = Fρ,t .

Not true if ν ̸= ρ. Gν,t may not even be the Fourier transform of a probability

measure.

The interaction log ρ⊗ σz is non local. Does it make sense in the thermodynamic

limit?
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Thermodynamic limit

• Ut(α) = exp
Ä
−it(Hc ⊗ 1C2 + Hh ⊗ 1C2 + e−

α
2

log ρ⊗σz (V ⊗ 1C2 )e
α
2

log ρ⊗σz )
ä
,

• Ut(α)⇝ τ tα, a group of ∗-automorphism of O,

• ∂tτ tα = τ tα
Ä
δc ⊗ 1M2

+ δh ⊗ 1M2
+ i
î
1
2
ς−iα
ρ (V )⊗ Pe +

1
2
ς iαρ (V )⊗ Pg , ·

óä
,

• ς−iα
ρ (V ) ∈ O (quasi-)local,

ρa(t, α) = ν ⊗ ρa ◦ τ tα|M2(C).

Proposition

ρa(t, α) =
1

2

Ç
1 Gν,t(α)

Gν,t(α) 1

å
with Gν,t(α) = ν([Dρ−t : Dρ]∗

α/2
[Dρ−t : Dρ]α/2).
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Ancilla tomography

• If ν = ρ, Gρ,t(α) = Fρ,t(α)

• If ν ̸= ρ, the function Gν,t may be a Fourier transform,

• But is not necessarily the characteristic function of a random variable,

• (τ tα)t differs from (τ t)t only through the local ancilla-system interaction.

Questions:

• Is this method of estimation stable with respect to initial time?

• What can we say when ν = ρ+?

• Do we have PREF?

Definition
The PREF holds for G if

lim
t→∞

lim
T→∞

1
t
log GρT ,t(α) = lim

T→∞
lim

t→∞
1
t
log GρT ,t(α)

for α in a real neighborhood of 0.
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Ancilla tomography stability

Theorem (B., Bruneau, Jakšić, Panati, Pillet 2024)
There exist C > 0 such that, for any T > 0 and α in a real neighborhood of 0,

C−TGρT ,t(α) ≤ Fρ,t(α) ≤ CTGρT ,t(α).

So that, for all T > 0,

lim
t→∞

1
t
log GρT ,t(α) = lim

t→∞
1
t
logFρ,t .

Moreover, for some paradigmatic models

lim
t→∞

lim
T→∞

1
t
log GρT ,t(α) = lim

T→∞
lim

t→∞
1
t
log GρT ,t(α).

Hence, the PREF holds and

lim
t→∞

lim
T→∞

1
t
log GρT ,t(α) = lim

t→∞
1
t
logFρ,t(α).

The second part is proved under the standard hypotheses of the Liouvillean spectral

(resonances) approach to existence and uniqueness of NESS (developed at the end of

the 90’s and in the 2000’s).

Typically applies to the spin-fermion model for a high enough temperature and small

enough ∥V ∥. Also, α 7→ ς iαρ (V ) has to be analytic in a neighborhood of 0 (UV
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GNS representation

Let (h, π,Ω) be the GNS representation of (O, ρ).

Let ∆ and J be the associated modular operator and modular conjugation:

J∆
1
2
ρ π(A)Ω = π(A∗)Ω.

Liouvilean formulation of the evolution: L : H → H, L∗ = L, JL = −LJ and

π(τ t(A)) = e itLπ(A)e−itL

for any A ∈ O. Similarly, Lfr = L∗fr , JLfr = −LfrJ

π(τ tfr (A)) = e itLfr π(A)e−itLfr .

L = Lfr + π(V )− Jπ(V )J.

Actually, ∀W ∈ O such that W = W ∗,

e it(L+Jπ(W )J)π(A)e−it(L+Jπ(W )J) = π(τ t(A)).
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Liouvilean expressions for F and G

Two one parameter families of Liouvilleans:

• For any A ∈ O, π(τ t(A)) = e itLαπ(A)e−itLα with

Lα = L− Jπ(V )J + Jπ(ς−iα
ρ (V ))J

Remark that L0 = L,

• L̂α = ∆
−α/2
ρ L1/2−α∆

α/2
ρ , or

L̂α = L− π(V ) + Jπ(V )J + π(ς
iα/2
ρ (V ))− Jπ(ς

−i(1−α)/2
ρ (V ))J

Proposition

Fρ,t(α) = ⟨Ω, e itL1/2−αΩ⟩,

GρT ,t(α) = ⟨Ω, e iTL1/2e itL̂αΩ⟩.

It remains to analyse the spectrum of these Liouvilleans.
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Spectral theory: Analytic deformation

On H, the spectrum of L has no gap. But there exist (Sθ)θ∈C in L(h) such that

SθΩ = Ω and Lfr (θ) = SθLfrS
−θ = Lfr + θN

and

spec Lfr ⊂ R, spec Lfr (θ) = spec([Hsys., ·]) ∪ (θN∗ + R).

On D = ∩|Imθ|<r DomSθ a gap opens between the discrete and essential spectrum

for Lfr (θ).

Then, using

Lα(θ) = SθLαS
−θ = Lfr + θN + λW (α, θ)

and perturbation theory in (θ, λ), the gap remains open.

Rez

Imz
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Simplicity from perturbation theory

From the weak coupling limit (Davies Lindbladian), for λ small enough, the

dominating eigenvalue of SθLαS−θ is simple and purely imaginary. A similar

argument yields the same for L̂α.

Rez

Imz

Hence, for α real, both Lα and L̂α have some simple purely imaginary resonances,

E(α) and Ê(α) respectively, dominating their spectrum.
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Limit CGF for two-time measurement

There exist γ > 0 such that,

⟨Ω, e itL1/2−αΩ⟩ = ⟨Ω, e itL1/2−α(θ)Ω⟩ = ce itE(1/2−α) + O(et(Im(E(1/2−α)−γ))).

Hence,

lim
t→∞

1
t
logFt(α) = iE(1/2− α).
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Limit CGF and PREF for ancilla tomography

GρT ,t(α) = ⟨Ω, e itL1/2e itL̂αΩ⟩ = ⟨Ω, e itL1/2(θ)e itL̂α(θ)Ω⟩.

Hence,

lim
T→∞

GρT ,t(α) = ⟨Ω,X (α, θ)e itL̂α(θ)Ω⟩.

It follows that, there exist γ > 0 such that,

lim
T→∞

GρT ,t(α) = ĉe itÊ(α) + O(et(Im(Ê(α)−γ))).

Then E(1/2− α) = Ê(α) yields the theorem.
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Summary

For two time measurement definition of entropy fluctuations:

• Direct measurement implies PREF and stability by thermodynamic trivialization,

• Ancilla tomography is stable (under UV assumptions) and under standard

spectral assumptions, PREF holds.

• However ancilla does not provide access to each fluctuation individualy.
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Some open questions

• Proof of PREF using the scattering approach (asymptotic abelianess, XY-model,

Electronic Black Box. . . )?

• Taking into account imperfect measurements of − log ρ and check the

consistency of a perfect measurement limit?

• Other definitions of stochastic entropy production? Continuous measurement in a

non-Markovian setting?
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Thank you!
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