Hilbert-Schmidt norm estimates for fermionic reduced density matrices

Quantissima sur Oise, CY Advanced Studies 2025 François Visconti

Fermionic reduced density matrices

Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a separable Hilbert space. Consider *N*-body fermionic wavefunctions $\Psi \in \mathcal{H}_N$:

$$U_{\sigma}\Psi = \operatorname{sgn}(\sigma)\Psi,\tag{1}$$

for any permutation σ of $\{1,\ldots,N\}$. The permutation operator U_{σ} is defined by

$$U_{\sigma}u_1\otimes\cdots\otimes u_N=u_{\sigma(1)}\otimes\cdots\otimes u_{\sigma(N)}, \qquad (2)$$

for all $u_1, \ldots, u_N \in \mathcal{H}$.

Given $\Psi \in \mathcal{H}_N$, define the k-particle reduced density matrix

$$\Gamma^{(k)} = \binom{N}{k} \operatorname{Tr}_{k+1 \to N} |\Psi\rangle\langle\Psi|$$

This is a nonnegative trace-class operator that satisfies

$$\operatorname{Tr}\Gamma^{(k)} = \binom{N}{k}.\tag{3}$$

Fermionic reduced density matrices

Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a separable Hilbert space. Consider *N*-body fermionic wavefunctions $\Psi \in \mathcal{H}_N$:

$$U_{\sigma}\Psi = \operatorname{sgn}(\sigma)\Psi,\tag{1}$$

for any permutation σ of $\{1,\ldots,N\}$. The permutation operator U_{σ} is defined by

$$U_{\sigma}u_1\otimes\cdots\otimes u_N=u_{\sigma(1)}\otimes\cdots\otimes u_{\sigma(N)}, \qquad (2)$$

for all $u_1, \ldots, u_N \in \mathcal{H}$.

Given $\Psi \in \mathcal{H}_N$, define the *k*-particle reduced density matrix

$$\Gamma^{(k)} = \binom{N}{k} \operatorname{Tr}_{k+1 \to N} |\Psi\rangle\langle\Psi|.$$

This is a nonnegative trace-class operator that satisfies

$$\operatorname{Tr}\Gamma^{(k)} = \binom{N}{k}.\tag{3}$$

Estimates on the operator norm

As a consequence of the normalisation

$$\operatorname{Tr}\Gamma^{(k)}=\binom{N}{k},$$

we have the trivial bound

$$\|\Gamma^{(k)}\|_{\mathrm{op}} \le \binom{N}{k}.\tag{4}$$

Optimal for bosons, but not at all for fermions. For $\Gamma^{(1)}$, the **Pauli** exclusion principle implies

$$\|\Gamma^{(1)}\|_{\text{op}} \le 1,$$
 (5)

which is optimised by Slater determinants. For $\Gamma^{(2)}$, Yang '62 proved

$$\|\Gamma^{(2)}\|_{\mathrm{op}} \le N/2,\tag{6}$$

which is **not** optimised by Slater determinants, but by Yang pairing states.

Estimates on the operator norm

As a consequence of the normalisation

$$\operatorname{Tr} \Gamma^{(k)} = \binom{N}{k},$$

we have the trivial bound

$$\|\Gamma^{(k)}\|_{\mathrm{op}} \le \binom{N}{k}.\tag{4}$$

Optimal for bosons, but not at all for fermions. For $\Gamma^{(1)}$, the **Pauli exclusion principle** implies

$$\|\Gamma^{(1)}\|_{\text{op}} \le 1,$$
 (5)

which is optimised by Slater determinants. For $\Gamma^{(2)}$, Yang '62 proved

$$|\Gamma^{(2)}||_{\mathrm{op}} \le N/2,\tag{6}$$

which is **not** optimised by Slater determinants, but by Yang pairing states.

Estimates on the operator norm

As a consequence of the normalisation

$$\operatorname{Tr}\Gamma^{(k)}=\binom{N}{k},$$

we have the trivial bound

$$\|\Gamma^{(k)}\|_{\mathrm{op}} \le \binom{N}{k}.\tag{4}$$

Optimal for bosons, but not at all for fermions. For $\Gamma^{(1)}$, the **Pauli exclusion principle** implies

$$\|\Gamma^{(1)}\|_{\mathrm{op}} \le 1,\tag{5}$$

which is optimised by Slater determinants. For $\Gamma^{(2)}$, Yang '62 proved

$$\|\Gamma^{(2)}\|_{\mathrm{op}} \le N/2,\tag{6}$$

which is **not** optimised by Slater determinants, but by Yang pairing states.

Estimates on the operator norm II

For $\Gamma^{(1)}$ and $\Gamma^{(2)}$,

$$\|\Gamma^{(1)}\|_{\mathrm{op}} \leq 1 \quad \text{and} \quad \|\Gamma^{(2)}\|_{\mathrm{op}} \leq \textit{N}/2.$$

More generally, Bell '62 (k odd) and Yang '63 (k even) proved the bound

$$\|\Gamma^{(k)}\|_{\text{op}} \le C_k N^{\lfloor k/2 \rfloor}. \tag{7}$$

The optimal constant is conjectured to be given by Yang pairing states (see Carlen-Lieb-Reuvers '16).

Estimates on the operator norm II

For $\Gamma^{(1)}$ and $\Gamma^{(2)}$,

$$\|\Gamma^{(1)}\|_{\mathrm{op}} \le 1$$
 and $\|\Gamma^{(2)}\|_{\mathrm{op}} \le N/2$.

More generally, Bell '62 (k odd) and Yang '63 (k even) proved the bound

$$\|\Gamma^{(k)}\|_{\mathrm{op}} \le C_k N^{\lfloor k/2 \rfloor}. \tag{7}$$

The optimal constant is conjectured to be given by Yang pairing states (see Carlen-Lieb-Reuvers '16).

Bell's argument

Let $(u_i)_i$ be an ONB of \mathcal{H} . Denote by a_i^* and a_i the operators that create and annihilate a particle in state u_i . Let $f \in \mathcal{H}_k$ and write

$$\langle f, \Gamma^{(k)} f \rangle = \sum_{i_1 < \dots < i_k \ j_1 < \dots < j_k} \overline{f_{i_1 \dots i_k}} f_{j_1 \dots j_k} \langle a_{i_1}^* \dots a_{i_k}^* a_{j_k} \dots a_{j_1} \rangle_{\Psi}.$$

Define

$$F = \sum_{i_1 < \dots < i_k} f_{i_1 \dots i_k} a_{i_k} \dots a_{i_1}.$$

Then,

$$\langle f, \Gamma^{(k)} f \rangle = \langle F^* F \rangle_{\Psi} \le \langle F^* F + F F^* \rangle_{\Psi}.$$

Using the CAR

$$\{a_i, a_j\} = \{a_i^*, a_j^*\} = 0$$
 and $\{a_i, a_j^*\} = \delta_{ij}$,

we see that

$$a_{i_1}^*\ldots a_{i_k}^*a_{j_k}\ldots a_{j_1}=(-1)^ka_{j_k}\ldots a_{j_1}a_{i_1}^*\ldots a_{i_k}^*+\text{lower order terms}$$

Bell's argument

Let $(u_i)_i$ be an ONB of \mathcal{H} . Denote by a_i^* and a_i the operators that create and annihilate a particle in state u_i . Let $f \in \mathcal{H}_k$ and write

$$\langle f, \Gamma^{(k)} f \rangle = \sum_{i_1 < \dots < i_k} \sum_{j_1 < \dots < j_k} \overline{f_{i_1 \dots i_k}} f_{j_1 \dots j_k} \langle a_{i_1}^* \dots a_{i_k}^* a_{j_k} \dots a_{j_1} \rangle_{\Psi}.$$

Define

$$F = \sum_{i_1 < \dots < i_k} f_{i_1 \dots i_k} a_{i_k} \dots a_{i_1}.$$

Then,

$$\langle f, \Gamma^{(k)} f \rangle = \langle F^* F \rangle_{\Psi} \leq \langle F^* F + F F^* \rangle_{\Psi}.$$

Using the CAR

$$\{a_i, a_j\} = \{a_i^*, a_j^*\} = 0$$
 and $\{a_i, a_j^*\} = \delta_{ij}$,

we see that

$$a_{i_1}^*\ldots a_{i_k}^*a_{j_k}\ldots a_{j_1}=(-1)^ka_{j_k}\ldots a_{j_1}a_{i_1}^*\ldots a_{i_k}^*+\text{lower order terms}.$$

Hilbert-Schmidt norm

Consider

$$\|\Gamma^{(k)}\|_{\mathrm{HS}}^2 = \mathsf{Tr}\left[(\Gamma^{(k)})^2\right].$$

The estimate $\|\Gamma^{(1)}\|_{\mathrm{op}} \leq 1$ implies

$$\|\Gamma^{(1)}\|_{\mathrm{HS}}^2 \le \operatorname{Tr} \Gamma^{(1)} = N,$$
 (8)

which is optimised by Slater determinants. More generally, the estimate $\|\Gamma^{(k)}\|_{\mathrm{op}} \leq C_k N^{\lfloor k/2 \rfloor}$ implies

$$\|\Gamma^{(k)}\|_{\mathrm{HS}}^2 \le C_k N^{\lfloor k/2 \rfloor} \operatorname{Tr} \Gamma^{(k)} \le C_k N^{\lfloor k/2 \rfloor} N^k. \tag{9}$$

This is however **not** optimal at all. In fact, Carlen–Lieb–Reuvers '16 conjectured that the Hilbert–Schmidt norm is maximised by Slater determinants. Namely,

$$\|\Gamma^{(k)}\|_{\mathrm{HS}}^2 \le \binom{N}{k}.\tag{10}$$

Hilbert-Schmidt norm

Consider

$$\|\Gamma^{(k)}\|_{\mathrm{HS}}^2 = \mathsf{Tr}\,\big[(\Gamma^{(k)})^2\big].$$

The estimate $\|\Gamma^{(1)}\|_{\mathrm{op}} \leq 1$ implies

$$\|\Gamma^{(1)}\|_{\mathrm{HS}}^2 \le \operatorname{Tr} \Gamma^{(1)} = N,$$
 (8)

which is optimised by Slater determinants. More generally, the estimate $\|\Gamma^{(k)}\|_{\mathrm{op}} \leq C_k N^{\lfloor k/2 \rfloor}$ implies

$$\|\Gamma^{(k)}\|_{\mathrm{HS}}^2 \le C_k N^{\lfloor k/2 \rfloor} \operatorname{Tr} \Gamma^{(k)} \le C_k N^{\lfloor k/2 \rfloor} N^k. \tag{9}$$

This is however **not** optimal at all. In fact, Carlen–Lieb–Reuvers '16 conjectured that the Hilbert–Schmidt norm is maximised by Slater determinants. Namely,

$$\|\Gamma^{(k)}\|_{\mathrm{HS}}^2 \le \binom{N}{k}.\tag{10}$$

Hilbert-Schmidt norm

Consider

$$\|\Gamma^{(k)}\|_{\mathrm{HS}}^2 = \mathrm{Tr}\left[(\Gamma^{(k)})^2\right].$$

The estimate $\|\Gamma^{(1)}\|_{OD} \leq 1$ implies

$$\|\Gamma^{(1)}\|_{\mathrm{HS}}^2 \le \operatorname{Tr} \Gamma^{(1)} = N,$$
 (8)

which is optimised by Slater determinants. More generally, the estimate $\|\Gamma^{(k)}\|_{\mathrm{op}} \leq C_k N^{\lfloor k/2 \rfloor}$ implies

$$\|\Gamma^{(k)}\|_{\mathrm{HS}}^2 \le C_k N^{\lfloor k/2 \rfloor} \operatorname{Tr} \Gamma^{(k)} \le C_k N^{\lfloor k/2 \rfloor} N^k. \tag{9}$$

This is however **not** optimal at all. In fact, Carlen–Lieb–Reuvers '16 conjectured that the Hilbert–Schmidt norm is maximised by Slater determinants. Namely,

$$\|\Gamma^{(k)}\|_{\mathrm{HS}}^2 \le \binom{N}{k}.\tag{10}$$

Estimates on the Hilbert-Schmidt norm

Theorem (Christiansen'24)

Let $\Psi \in \mathcal{H}_N$ be normalised and denote its 2-particle reduced density matrix by $\Gamma^{(2)}$. Then

$$\|\Gamma^{(2)}\|_{\mathrm{HS}} \le \sqrt{5}N/2.$$
 (11)

Idea: use the characterisation $\|\Gamma^{(2)}\|_{\mathrm{HS}}=\sup_A \mathrm{Tr}(A\Gamma^{(2)})$ over all A such that $\|A\|_{\mathrm{HS}}=1.$ Write

$$4\operatorname{Tr}(A\Gamma^{(2)}) = \sum_{i,j,k,\ell} A_{ijk\ell} \langle \Psi, a_i^* a_j^* a_\ell a_k \Psi \rangle = \sum_k \Big\langle \sum_{i,j,\ell} A_{ijk\ell} a_\ell^* a_j a_i \Psi, a_k \Psi \Big\rangle.$$

Then, use the Cauchy-Schwarz inequality and a Bell-like argument

Estimates on the Hilbert-Schmidt norm

Theorem (Christiansen'24)

Let $\Psi \in \mathcal{H}_N$ be normalised and denote its 2-particle reduced density matrix by $\Gamma^{(2)}$. Then

$$\|\Gamma^{(2)}\|_{\mathrm{HS}} \le \sqrt{5}N/2.$$
 (11)

Idea: use the characterisation $\|\Gamma^{(2)}\|_{\rm HS}=\sup_A {\rm Tr}(A\Gamma^{(2)})$ over all A such that $\|A\|_{\rm HS}=1$. Write

$$4\,\text{Tr}(A\Gamma^{(2)}) = \sum_{i,j,k,\ell} A_{ijk\ell} \langle \Psi, a_i^* a_j^* a_\ell a_k \Psi \rangle = \sum_k \Big\langle \sum_{i,j,\ell} A_{ijk\ell} a_\ell^* a_j a_i \Psi, a_k \Psi \Big\rangle.$$

Then, use the Cauchy-Schwarz inequality and a Bell-like argument.

Estimates on the Hilbert-Schmidt norm II

Theorem (V.'25)

Let $\Psi \in \mathcal{H}_N$ be normalised and denote its k-particle reduced density matrix by $\Gamma^{(k)}$. Then

$$\|\Gamma^{(k)}\|_{\mathrm{HS}} \le C_k N^{k/2},$$
 (12)

for some C_k depending only on k.

Idea: expand Ψ into Slater determinants built from $(u_i)_i$:

$$\Psi = \sum_{\mathsf{I}} c_{\mathsf{I}} u_{\mathsf{I}},$$

where $I = (i_1, \dots, i_N)$ with $i_1 < \dots < i_N$ and

$$u_{\mathbf{I}} = u_{i_1} \wedge \cdots \wedge u_{i_N}$$

This gives

$$\|\Gamma^{(k)}\|_{\mathrm{HS}}^2 = \sum_{\substack{\mathbf{I},\mathbf{J}\\\mathbf{I}',\mathbf{I}'}} c_{\mathbf{I}} c_{\mathbf{J}} c_{\mathbf{I}'} c_{\mathbf{J}'} \operatorname{Tr}(\operatorname{Tr}_{k+1\to N} |u_{\mathbf{I}}\rangle\langle u_{\mathbf{J}}| \operatorname{Tr}_{k+1\to N} |u_{\mathbf{J}'}\rangle\langle u_{\mathbf{I}'}|). \quad (13)$$

Estimates on the Hilbert-Schmidt norm II

Theorem (V.'25)

Let $\Psi \in \mathcal{H}_N$ be normalised and denote its k-particle reduced density matrix by $\Gamma^{(k)}$. Then

$$\|\Gamma^{(k)}\|_{\mathrm{HS}} \le C_k N^{k/2},\tag{12}$$

for some C_k depending only on k.

Idea: expand Ψ into Slater determinants built from $(u_i)_i$:

$$\Psi = \sum_{\mathbf{l}} c_{\mathbf{l}} u_{\mathbf{l}},$$

where $I = (i_1, \dots, i_N)$ with $i_1 < \dots < i_N$ and

$$u_{\mathbf{l}} = u_{i_{\mathbf{1}}} \wedge \cdots \wedge u_{i_{N}}.$$

This gives

$$\|\Gamma^{(k)}\|_{\mathrm{HS}}^{2} = \sum_{\substack{\mathbf{I},\mathbf{J}\\\mathbf{I}',\mathbf{J}'}} c_{\mathbf{I}} c_{\mathbf{J}} c_{\mathbf{I}'} c_{\mathbf{J}'} \operatorname{Tr}(\operatorname{Tr}_{k+1\to N} |u_{\mathbf{I}}\rangle\langle u_{\mathbf{J}}| \operatorname{Tr}_{k+1\to N} |u_{\mathbf{J}'}\rangle\langle u_{\mathbf{I}'}|). \quad (13)$$

Entropy

Given $\Psi \in \mathcal{H}_N$, let $\gamma^{(k)}$ denote its **trace normalised** k-particle reduced density matrix:

 $\gamma^{(k)} = \mathsf{Tr}_{k+1 \to N} \, |\Psi\rangle\langle\Psi|.$

The von Neumann entropy of $\gamma^{(k)}$ is defined as

$$S(\gamma^{(k)}) = -\operatorname{Tr}(\gamma^{(k)}\log\gamma^{(k)}).$$

Jensen's inequality implies

$$S(\gamma^{(k)}) \ge -\log(\|\gamma^{(k)}\|_{\mathrm{HS}}^2).$$

Then, the bound $\|\gamma^{(k)}\|_{\mathrm{HS}}^2 \leq \mathcal{C}_k \mathcal{N}^{-k}$ yields

$$S(\gamma^{(k)}) \ge k \log N + \mathcal{O}(1). \tag{14}$$

This was conjectured by Lemm '17 and proven by himself for k=2 and \mathcal{H} of dimension not much larger than N.

Entropy

Given $\Psi \in \mathcal{H}_N$, let $\gamma^{(k)}$ denote its **trace normalised** k-particle reduced density matrix:

$$\gamma^{(k)} = \operatorname{Tr}_{k+1 \to N} |\Psi\rangle\langle\Psi|.$$

The von Neumann entropy of $\gamma^{(k)}$ is defined as

$$S(\gamma^{(k)}) = -\operatorname{Tr}(\gamma^{(k)}\log\gamma^{(k)}).$$

Jensen's inequality implies

$$\mathcal{S}(\gamma^{(k)}) \ge -\log(\|\gamma^{(k)}\|_{\mathrm{HS}}^2).$$

Then, the bound $\|\gamma^{(k)}\|_{\mathrm{HS}}^2 \leq C_k N^{-k}$ yields

$$S(\gamma^{(k)}) \ge k \log N + \mathcal{O}(1). \tag{14}$$

This was conjectured by Lemm '17 and proven by himself for k=2 and \mathcal{H} of dimension not much larger than N.

Thank you for your attention!

Bibliography I

- [1] J. S. Bell, "On a conjecture of C. N. Yang," *Phys. Lett.*, vol. 2, p. 116, 1962.
- [2] E. A. Carlen, E. H. Lieb, and R. Reuvers, "Entropy and entanglement bounds for reduced density matrices of fermionic states," *Commun. Math. Phys.*, vol. 344, no. 3, pp. 655–671, 2016.
- [3] M. R. Christiansen, "Hilbert–Schmidt estimates for fermionic 2-body operators," *Commun. Math. Phys.*, vol. 405, no. 18, 2024.
- [4] M. Lemm, On the entropy of fermionic reduced density matrices, 2017. arXiv: 1702.02360 [quant-ph].
- [5] R. Reuvers, "An algorithm to explore entanglement in small systems," *Proc. R. Soc. A*, vol. 474, no. 2214, p. 20180023, 2018.
- [6] F. L. A. Visconti, Hilbert–Schmidt norm estimates for fermionic reduced density matrices, 2025. arXiv: 2504.03488 [math-ph].
- [7] C. N. Yang, "Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors," *Rev. Mod. Phys.*, vol. 34, pp. 694–704, 1962.

Bibliography II

[8] —, "Some properties of the reduced density matrix," *J. Math. Phys.*, vol. 4, no. 3, pp. 418–419, 1963.

Yang pairing states

Take $\mathcal{H} = \mathbb{C}^M$ and assume N = 2n and M = 2m. Let $(u_i)_i$ be an ONB of \mathcal{H} . Define $p_i = (2i-1,2i)$ and $u_{p_i} = u_{2i-1} \wedge u_{2i}$. Define also

$$\Phi_{i_{\mathbf{1}}\dots i_{m}}=u_{p_{i_{\mathbf{1}}}}\wedge\cdots\wedge u_{p_{i_{m}}}.$$

Then, the Yang pairing state $\Psi_{N,M}$ is given by

$$\Psi_{N,M} = \binom{m}{n}^{-1/2} \sum_{i_1 < \dots < i_m} \Phi_{i_1 \dots i_m}.$$

Proposition (Carlen-Lieb-Reuvers '16)

Let $\Gamma^{(2)}$ denote the 2-particle reduced density matrix of $\Psi_{N,M}$. Then, $\Gamma^{(2)}$ has eigenvalues

$$\Lambda_2^{N,M} = rac{N}{2} rac{m-n+1}{m}$$
 and $\lambda_2^{N,M} = rac{N}{2} rac{n-1}{m(m-1)},$

with respective multiplicities 1 and $2m^2 - m - 1$.

Rewriting of the Hilbert-Schmidt norm

Define

$$\Lambda(\mathsf{D};\alpha,\beta;\varepsilon,\eta) = \mathsf{sgn}(\alpha \cup \beta,\varepsilon \cup \eta) c_{\mathsf{D} \cup \alpha \cup \varepsilon} c_{\mathsf{D} \cup \alpha \cup \eta} c_{\mathsf{D} \cup \beta \cup \varepsilon} c_{\mathsf{D} \cup \beta \cup \eta}.$$

Then,

$$\|\Gamma^{(k)}\|_{\mathrm{HS}}^{2} = \sum_{\substack{\mathbf{I},\mathbf{J}\\\mathbf{I}',\mathbf{J}'}} c_{\mathbf{I}}c_{\mathbf{J}}c_{\mathbf{I}'}c_{\mathbf{J}'}\operatorname{Tr}(\operatorname{Tr}_{k+1\to N}|u_{\mathbf{I}}\rangle\langle u_{\mathbf{J}}|\operatorname{Tr}_{k+1\to N}|u_{\mathbf{J}'}\rangle\langle u_{\mathbf{I}'}|)$$

$$= \sum_{s=0}^{k} \sum_{r=0}^{N} \binom{N-r}{k-s} \sum_{|\mathbf{D}|=N-r} \sum_{|\boldsymbol{\varepsilon}|,|\boldsymbol{\eta}|=r-s} \sum_{|\boldsymbol{\alpha}|,|\boldsymbol{\beta}|=s} \Lambda(\mathbf{D};\boldsymbol{\alpha},\boldsymbol{\beta};\boldsymbol{\varepsilon},\boldsymbol{\eta}) \quad (15)$$

The multi-indices I, J, I' and J' can be related to the indices in (15) as follows:

- D is the set of indices that I, J, I' and J' all have in common;
- $oldsymbol{\varepsilon}$ is the set of indices that only I and J have in common;
- $oldsymbol{\circ}$ η is the set of indices that only I' and J' have in common;
- α is the set of indices that only I and I' have in common;
- β is the set of indices that only J' and J' have in common.

Rewriting of the Hilbert-Schmidt norm II

$$\|\Gamma^{(k)}\|_{\mathrm{HS}}^2 = \sum_{s=0}^k \sum_{r=0}^N \binom{N-r}{k-s} \sum_{|\mathsf{D}|=N-r} \sum_{|\boldsymbol{\varepsilon}|,|\boldsymbol{\eta}|=r-s} \sum_{|\boldsymbol{\alpha}|,|\boldsymbol{\beta}|=s} \Lambda(\mathsf{D};\boldsymbol{\alpha},\boldsymbol{\beta};\boldsymbol{\varepsilon},\boldsymbol{\eta})$$

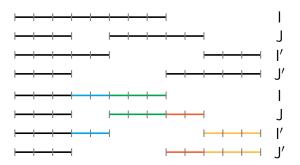


Figure: The multi-indices in (15) are colour coded in the right-hand side as follows: D, α , β , ε , η .