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Fermionic reduced density matrices

Let (#, (-,-)) be a separable Hilbert space. Consider N-body fermionic
wavefunctions V € Hy:

UV = Sgn(a)wv (1)
for any permutation o of {1,..., N}. The permutation operator U, is
defined by

Uau1®"'®uN:ua(1)®"'®ua(N)7 (2)

forall uy,...,uy € H.



Fermionic reduced density matrices

Let (#, (-,-)) be a separable Hilbert space. Consider N-body fermionic
wavefunctions V € Hy:

UsV = sgn(o)V, (1)
for any permutation o of {1,..., N}. The permutation operator U, is
defined by

Uau1®"'®uN:ua(1)®"'®ua(N)7 (2)
forall uy,...,uy € H.

Given W € H, define the k-particle reduced density matrix
N
rk) = (k> Trision [W)(W).

This is a nonnegative trace-class operator that satisfies

Trrk) = <’Z> (3)



Estimates on the operator norm

As a consequence of the normalisation
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we have the trivial bound
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Estimates on the operator norm

As a consequence of the normalisation

N
Trrk) =
= (i)

e < () (@

Optimal for bosons, but not at all for fermions. For IV, the Pauli
exclusion principle implies

we have the trivial bound

IF®lop < 1, (5)
which is optimised by Slater determinants. For I'®), Yang '62 proved
IF®llop < N/2, (6)

which is not optimised by Slater determinants, but by Yang pairing
states.
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Estimates on the operator norm I

For I and 1®),
IFop <1 and  [F@lo, < N/2.
More generally, Bell '62 (k odd) and Yang '63 (k even) proved the bound
P o < G2 @

The optimal constant is conjectured to be given by Yang pairing states
(see Carlen-Lieb-Reuvers '16).



Bell's argument

Let (u;); be an ONB of #H. Denote by a} and a; the operators that create
and annihilate a particle in state u;. Let f € H, and write

(k
f F )f E E /1 ik 11 jk /1- alkajk' 'aj1>‘|"

i << 1< <Jik

E - T

ip <<l

Define

Then,
(F,TFY = (F*F)y < (F*F + FF*)y.



Bell's argument

Let (u;); be an ONB of #H. Denote by a} and a; the operators that create
and annihilate a particle in state u;. Let f € H, and write

f Fk)f Z Z f i j1 jk . alkajk' 'aj1>‘|"

i << 1< <Jik

E - T

ip <<l

Define

Then,
(F,TFY = (F*F)y < (F*F + FF*)y.

Using the CAR
{ai,a} = {a}",aj‘} =0 and {a, af} = 0jj,
we see that
a*

* o k. L o* *
neeeapa...a, = (—1)%a;, ... a,a; ... a; + lower order terms.
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Hilbert—=Schmidt norm

Consider
I3 = Tr [(F4))2].

The estimate ||[T)]|,, < 1 implies
Ml < Trr® =N, (8)

which is optimised by Slater determinants. More generally, the estimate
[T |op < CkNLE/2] implies

P02 < CN/2ITr T () < ¢ NLK/21 Nk, (9)

This is however not optimal at all. In fact, Carlen—Lieb—Reuvers '16
conjectured that the Hilbert-Schmidt norm is maximised by Slater

determinants. Namely,
N
s < () (10)
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Estimates on the Hilbert—=Schmidt norm

Theorem (Christiansen'24)

Let W € Hpy be normalised and denote its 2-particle reduced density
matrix by T® . Then
IT®|lus < VBN/2. (11)

Idea: use the characterisation ||[F® g = sup, Tr(AF®) over all A such
that ||A|lus = 1. Write

ATHAT®) = 3 AW, afgfaacw) = > (D AgweaiajaV, acV).
ikt kit

Then, use the Cauchy—Schwarz inequality and a Bell-like argument.
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Let WV € Hy be normalised and denote its k-particle reduced density
matrix by TK). Then
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for some Cy depending only on k.



Estimates on the Hilbert—=Schmidt norm ||

Theorem (V.'25)

Let WV € Hy be normalised and denote its k-particle reduced density
matrix by TK). Then
M las < CN*/2, (12)

for some Cy depending only on k.

Idea: expand W into Slater determinants built from (u;);:
v=> aqu,
[

where | = (i, ..., iy) with i < -+ < iy and
u = up NN Uy
This gives
IFN3s = acsarey Tr(Trepasn ) (] Tripaon fuy) (uv]). (13)

1)
",y



Given WV € Hy, let fy(") denote its trace normalised k-particle reduced

density matrix:
Y = Trepaon [W) ().

The von Neumann entropy of () is defined as

S(yW) = = Tr(v¥ log y19).



Given WV € Hy, let fy(") denote its trace normalised k-particle reduced

density matrix:
Y = Trepaon [W) ().

The von Neumann entropy of () is defined as
S(11) = = Tr(v¥ log A1)
Jensen’s inequality implies
S(YH) = —log (|7 s).
Then, the bound |7 |25 < CkN~* yields
S(y9) > klog N + O(1). (14)

This was conjectured by Lemm '17 and proven by himself for k =2 and
‘H of dimension not much larger than N.



Thank you for your attention!
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Yang pairing states

Take H = CM and assume N =2n and M = 2m. Let (u;); be an ONB
of H. Define p; = (2i — 1,2i) and up, = u2j—1 A up;. Define also

Piyim = Upy N A p,

Then, the Yang pairing state Wy u is given by

m\ ~1/2
Wy = i i
o () Y e,

i< <im

Proposition (Carlen—Lieb—Reuvers '16)

Let T denote the 2-particle reduced density matrix of Wy ps. Then, r
has eigenvalues

Nm— 1 N —1
/\Q”M:—m iy and )\’2V’M— n

2 m T 2m(m-1)

with respective multiplicities 1 and 2m? — m — 1.



Rewriting of the Hilbert—Schmidt norm

Define

/\(D; a, B e, "7) = Sgn(a UpB,eU n)CDUaUeCDUaU'r[CDUﬁUeCDUBUn~

Then,

TR = acsarer Tr(Tricran [in) (us] Tricpa o ) (ur )
I,J

:ii< :S’) S Y Y ADia.Bien) (15)

[D|=N—r le],In|=r—s |al,|B|=s

The multi-indices 1, J,1" and J’ can be related to the indices in (15) as
follows:

o D is the set of indices that I, J,I" and J’ all have in common;
€ is the set of indices that only | and J have in common;

7 is the set of indices that only I’ and J' have in common;
« is the set of indices that only | and I’ have in common;

(3 is the set of indices that only J' and J’ have in common.



Rewriting of the Hilbert—Schmidt norm |l

kK N
||r<k>||%s=ZZ(Ak':5r> 2 > 2 MNDafiem)

s=0 r=0 [DI=N=r le],In|=r—s |el,|B|=s
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Figure: The multi-indices in (15) are colour coded in the right-hand side as
follows: D, «, 3, €,
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