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Fermionic reduced density matrices

Let (H, ⟨·, ·⟩) be a separable Hilbert space. Consider N-body fermionic
wavefunctions Ψ ∈ HN :

UσΨ = sgn(σ)Ψ, (1)

for any permutation σ of {1, . . . ,N}. The permutation operator Uσ is
defined by

Uσu1 ⊗ · · · ⊗ uN = uσ(1) ⊗ · · · ⊗ uσ(N), (2)

for all u1, . . . , uN ∈ H.
Given Ψ ∈ HN , define the k-particle reduced density matrix

Γ(k) =

(
N

k

)
Trk+1→N |Ψ⟩⟨Ψ|.

This is a nonnegative trace-class operator that satisfies

Tr Γ(k) =

(
N

k

)
. (3)
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Estimates on the operator norm

As a consequence of the normalisation

Tr Γ(k) =

(
N

k

)
,

we have the trivial bound

∥Γ(k)∥op ≤
(
N

k

)
. (4)

Optimal for bosons, but not at all for fermions. For Γ(1), the Pauli
exclusion principle implies

∥Γ(1)∥op ≤ 1, (5)

which is optimised by Slater determinants. For Γ(2), Yang ’62 proved

∥Γ(2)∥op ≤ N/2, (6)

which is not optimised by Slater determinants, but by Yang pairing
states.
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Estimates on the operator norm II

For Γ(1) and Γ(2),

∥Γ(1)∥op ≤ 1 and ∥Γ(2)∥op ≤ N/2.

More generally, Bell ’62 (k odd) and Yang ’63 (k even) proved the bound

∥Γ(k)∥op ≤ CkN
⌊k/2⌋. (7)

The optimal constant is conjectured to be given by Yang pairing states
(see Carlen-Lieb-Reuvers ’16).
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Bell’s argument

Let (ui )i be an ONB of H. Denote by a∗i and ai the operators that create
and annihilate a particle in state ui . Let f ∈ Hk and write

⟨f , Γ(k)f ⟩ =
∑

i1<···<ik

∑
j1<···<jk

fi1...ik fj1...jk ⟨a∗i1 . . . a
∗
ikajk . . . aj1⟩Ψ.

Define
F =

∑
i1<···<ik

fi1...ikaik . . . ai1 .

Then,
⟨f , Γ(k)f ⟩ = ⟨F ∗F ⟩Ψ ≤ ⟨F ∗F + FF ∗⟩Ψ.

Using the CAR

{ai , aj} = {a∗i , a∗j } = 0 and {ai , a∗j } = δij ,

we see that

a∗i1 . . . a
∗
ikajk . . . aj1 = (−1)kajk . . . aj1a

∗
i1 . . . a

∗
ik + lower order terms.
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Hilbert–Schmidt norm

Consider
∥Γ(k)∥2

HS = Tr
[
(Γ(k))2

]
.

The estimate ∥Γ(1)∥op ≤ 1 implies

∥Γ(1)∥2
HS ≤ Tr Γ(1) = N, (8)

which is optimised by Slater determinants. More generally, the estimate
∥Γ(k)∥op ≤ CkN

⌊k/2⌋ implies

∥Γ(k)∥2
HS ≤ CkN

⌊k/2⌋ Tr Γ(k) ≤ CkN
⌊k/2⌋Nk . (9)

This is however not optimal at all. In fact, Carlen–Lieb–Reuvers ’16
conjectured that the Hilbert–Schmidt norm is maximised by Slater
determinants. Namely,

∥Γ(k)∥2
HS ≤

(
N

k

)
. (10)
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Estimates on the Hilbert–Schmidt norm

Theorem (Christiansen’24)

Let Ψ ∈ HN be normalised and denote its 2-particle reduced density
matrix by Γ(2). Then

∥Γ(2)∥HS ≤
√

5N/2. (11)

Idea: use the characterisation ∥Γ(2)∥HS = supA Tr(AΓ
(2)) over all A such

that ∥A∥HS = 1. Write

4Tr(AΓ(2)) =
∑
i,j,k,ℓ

Aijkℓ⟨Ψ, a∗i a
∗
j aℓakΨ⟩ =

∑
k

〈∑
i,j,ℓ

Aijkℓa
∗
ℓajaiΨ, akΨ

〉
.

Then, use the Cauchy–Schwarz inequality and a Bell-like argument.
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Estimates on the Hilbert–Schmidt norm II

Theorem (V.’25)

Let Ψ ∈ HN be normalised and denote its k-particle reduced density
matrix by Γ(k). Then

∥Γ(k)∥HS ≤ CkN
k/2, (12)

for some Ck depending only on k .

Idea: expand Ψ into Slater determinants built from (ui )i :

Ψ =
∑

I

cIuI,

where I = (i1, . . . , iN) with i1 < · · · < iN and

uI = ui1 ∧ · · · ∧ uiN .

This gives

∥Γ(k)∥2
HS =

∑
I,J

I′,J′

cIcJcI′cJ′ Tr(Trk+1→N |uI⟩⟨uJ|Trk+1→N |uJ′⟩⟨uI′ |). (13)
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Entropy

Given Ψ ∈ HN , let γ(k) denote its trace normalised k-particle reduced
density matrix:

γ(k) = Trk+1→N |Ψ⟩⟨Ψ|.

The von Neumann entropy of γ(k) is defined as

S(γ(k)) = −Tr(γ(k) log γ(k)).

Jensen’s inequality implies

S(γ(k)) ≥ − log(∥γ(k)∥2
HS).

Then, the bound ∥γ(k)∥2
HS ≤ CkN

−k yields

S(γ(k)) ≥ k logN +O(1). (14)

This was conjectured by Lemm ’17 and proven by himself for k = 2 and
H of dimension not much larger than N.
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Thank you for your attention!
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Yang pairing states

Take H = CM and assume N = 2n and M = 2m. Let (ui )i be an ONB
of H. Define pi = (2i − 1, 2i) and upi = u2i−1 ∧ u2i . Define also

Φi1...im = upi1 ∧ · · · ∧ upim .

Then, the Yang pairing state ΨN,M is given by

ΨN,M =

(
m

n

)−1/2 ∑
i1<···<im

Φi1...im .

Proposition (Carlen–Lieb–Reuvers ’16)

Let Γ(2) denote the 2-particle reduced density matrix of ΨN,M . Then, Γ(2)

has eigenvalues

ΛN,M
2 =

N

2
m − n + 1

m
and λN,M

2 =
N

2
n − 1

m(m − 1)
,

with respective multiplicities 1 and 2m2 −m − 1.
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Rewriting of the Hilbert–Schmidt norm

Define

Λ(D;α,β; ε,η) = sgn(α ∪ β, ε ∪ η)cD∪α∪εcD∪α∪ηcD∪β∪εcD∪β∪η.

Then,

∥Γ(k)∥2
HS =

∑
I,J

I′,J′

cIcJcI′cJ′ Tr(Trk+1→N |uI⟩⟨uJ|Trk+1→N |uJ′⟩⟨uI′ |)

=
k∑

s=0

N∑
r=0

(
N − r

k − s

) ∑
|D|=N−r

∑
|ε|,|η|=r−s

∑
|α|,|β|=s

Λ(D;α,β; ε,η) (15)

The multi-indices I, J, I′ and J′ can be related to the indices in (15) as
follows:

D is the set of indices that I, J, I′ and J′ all have in common;
ε is the set of indices that only I and J have in common;
η is the set of indices that only I′ and J′ have in common;
α is the set of indices that only I and I′ have in common;
β is the set of indices that only J′ and J′ have in common.
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Rewriting of the Hilbert–Schmidt norm II

∥Γ(k)∥2
HS =

k∑
s=0

N∑
r=0

(
N − r

k − s

) ∑
|D|=N−r

∑
|ε|,|η|=r−s

∑
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I
J
I′

J′

I
J
I′

J′

Figure: The multi-indices in (15) are colour coded in the right-hand side as
follows: D, α, β, ε, η.


	References
	Appendix

