Exchangeability in Quantum Spin Systems

Oskar Olander

University of Gothenburg, Sweden Supervisor: Jakob Björnberg

Paris, 2025-09-10

Exchangeability

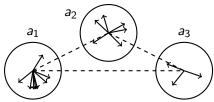
• A density matrix ρ_n describing n subsystems is exchangeable if it can be extended to a symmetric ρ_m for any $m \ge n$.

Exchangeability

- A density matrix ρ_n describing n subsystems is exchangeable if it can be extended to a symmetric ρ_m for any $m \ge n$.
- Quantum De Finetti (applied to S_n or $S_n \times S_n$ symmetry.)

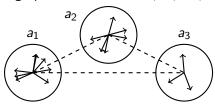
The *n*-partite model

• Complete *n*-partite graph. Relative size a_1, a_2, \ldots, a_n .



The *n*-partite model

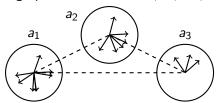
• Complete *n*-partite graph. Relative size a_1, a_2, \ldots, a_n .



ullet Antiferromagnetic interaction on each edge ---.

The *n*-partite model

• Complete *n*-partite graph. Relative size a_1, a_2, \ldots, a_n .



- Antiferromagnetic interaction on each edge ---.
- Theorem: The phase transition occurs β satisfying:

$$\sum_{i=1}^{n} \frac{1}{2 - \mathsf{a}_i \beta} = \frac{n-1}{2}$$

When is symmetric also exchangeable?

When is symmetric also exchangeable?

Classical, binary sequence, n = 2. symmetric $p(x_1, x_2)$.

$$\lambda_0 = p(0,0), \quad \lambda_1 = p(0,1) + p(1,0), \quad \lambda_2 = p(1,1)$$

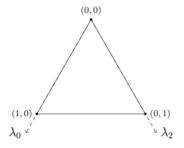


Figure 1: Symmetric distributions on $\{0,1\}^2$.

when is symmetric also exchangeable

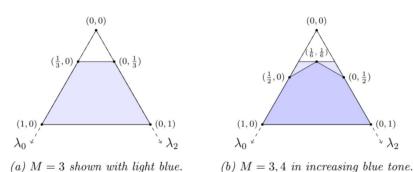


Figure 2: Symmetric distributions on $\{0,1\}^2$ that can be extended to $\{0,1\}^M$.

when is symmetric also exchangeable

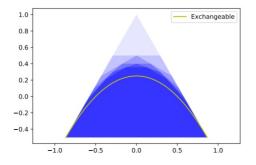


Figure 3: The marginals on $\{0,1\}^2$ from symmetric distributions on $\{0,1\}^M$ for $M=2,3\ldots,7$ in increasing blue tone. The $M=\infty$ border is yellow.

Necessary but not sufficient for general *n*

Conjecture: Let λ_k be probability of observing k ones in n trials. A necessary condition for exchangeability:

$$\lambda_0 + \lambda_n \ge \frac{1}{n}(\lambda_1 + \lambda_{n-1}) \ge \cdots \ge \frac{1}{\binom{n}{k}}(\lambda_k + \lambda_{n-k}), \quad \forall k \in [0, n/2].$$