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Consider N spinless fermions on a torus T* := [0, 27]3.

N
Hilbert Space: (V) = [2(T3V) ~ _/\1 L[2(T?)

Y € /H(N),w( s X(i)> Xm(j)) X (k) - - ) = (—l)ﬂiﬁ( ey Xiy Xy Xicy - - )
Hamilton operator:
ZAXJ—s—)\ > V(i—x) with V:R*5R
1<i<j<N

Mean-field Scaling regime: N — oo, weak interaction potential, mean
particle distance < interaction range
= Balance kinetic energy and interaction energy
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Consider N spinless fermions on a torus T° = [0, 27]3.

N
Hilbert Space: HM) := [2(T3V) =~ _é\l [3(T)

Vb € HM (oo Xy Xy X (s - --) = (1) (oo X, X5 Xy - -)
Hamilton operator:
ZAXJ+>\ > V(i—x) with V:R*-R
1<i<j<N

Mean-field Scaling regime: N — oo, weak interaction potential, mean
particle distance < interaction range

= A~ N3

Momentum distribution of a high density Fermi gas in Random Phase Approximation



For V =0,

hes(x1, X2, .., XN) =

~.
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= —— det ((27)3/2¢kix with k; € Z3
jii=1 /

z

Fermi ball:

Br = {keZ: |k| < ke} withN=|Bp| and kg~ N3
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For V =0,

hes(x1, X2, ..., Xn) =
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Fermi ball:
Br = {keZ?: |k| <k} withN=|Bp| and kp~ N3
For V # 0, in Hartree-Fock approximation, we have

_ 1
- W

for N orthonormal functions {¢; : j=1,..., N} C L?(T*), which
minimizes (¢, Hyt) in our setting.

" det (¢;(x:))_y
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Momentum Distribution: ng = (1, ajaqv) , for q € Z3,
with ag, aq fermionic creation and annihilation operators on

N
F =@ [3(T*") with Q = (1,0,0,...) the vacuum state.

n=0
<¢N, 3:; aC]'()/}N>
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For V =0 1

|q|

<77[JN7 a:;aqu>

In the Hartree-Fock approximation too,

(o 5008) = {

0

And beyond Hartee-Fock?

forq € Bg
forqg € By
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Main Result

Theorem [Benedikter, Lill, N. (about to appear)]

For interaction potential satisfying V e ¢1(Z®), V>0, V(0)=0 and
V(k)=V/(=k). Then, for any sequence of kg with kg — 0o and
N=N(kr):=|B(0)|, 3 a sequence of trial states (W ))ke With
Wy e [2(T*M) such that

® Yy is energetically close to the ground state in the sense that for
any £ >0 there exists a C. >0 such that V kg we have

(Wn, HyW) — Egs < Gk 87°

* and 3 constants C;, G, >0, depending on ||V||1, s.t. V kg and g€ Z?,

”2 + & for |q| > kp

={(Vp,ala,Vp) = )
n(9) = (¥ 3334 V) {1—n2+5q for [q| < kr

where np, the bosonized excitation density, satisfying [n}| < Cikgte(q)™

_1
and the error |£,| < Gokg “e(q) ™!, with e(q) being the excitation energy.
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Sketch of the proof

Consider ¢y € H™) such that
(Un, Hvon) = ckekp + corks + carkp + crpake + o(kp), as N — oo

where cgrpa kr is energy of the Random Phase approximation.
Construction of such y: We use
1. Particle-Hole transformation: R : 7 — F, a unitary transformation

acting as
ReatR={% 'fa< Bk
aq ifqge Br

2. An almost-bosonic Bogoliubov transformation: 7 : F — F, a

unitary operator defined explicitly as T = e,

k= % Do D K(O)rs (br(0)b-s(—0) = b (-~ )b} (1))

LeZ3 rsely
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We defined our T using b, b*, the quasi-bosonic pair operators, defined as

by(k) = ag—kaq , by(k)=aza; x Vg€ Lk
where Ly = {q:q € BEN(Br + k)}.

These pair operators follow the Quasi-bosonic
canonical commutation relation (QBCCR) k

[bp(k), bg(€)] = [by (k). bg(€)] = 0,

[bp(k), by ()] = 6p,q0k,c + €p,q(k; L), \J
where

epq(ki€) = — (0p.qag—eap—k + Op—k.q—rag3p)
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Then the momentum distribution of the trial state vy is

B . _J(Q, Tra5a, TQ) if g € B
ng = (Yn, agagdn) = {1 —(Q, T*aa,TQ) ifge Bp

We do an iterated Duhamel expansion .

Definition Let A be a family of symmetric operators A(f), for any ¢ € Z3,
with A(¢) : £2(Ls) — ¢?(L¢). We define the quadratic operators for A as

)= > > A(0)rs (b7 (£)bs(0) + b3 (£)b(2))

LeZ3 r,s€Ly

=) ) A0)rs (b (0)b_s(—£) + b7 ((—0)b (1)) .

£eZ3 r,s€ly

Then write the expansion in terms of these quadratic operators.
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Doing n Duhamel steps we arrive at

T ) =2 Y 1) S (2K )
LeZ3 m=2, :

m:even

-1 <Q, " Em(eﬂ(/"’))9>

=1
1
2 / A= 1) (2, (T3, Qe (K (P T, )
where, ©7%(P9) ={K,...{K,P9}...} ando(n)= {1 for nodd
—_————

2 forneven
ntimes

Em(P7) = —/d'"/\Tmeon(ml) (OR7(P)) T, (1)
Am
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Then in the limit n — oo we get

(Q, T abag T12) Z 1,(q)(cosh(2K(¢)) — ) 0
leZ3

1 & mn q
-5 <Q,mz_:15m(e,<(/> ))Q> .

@ First term gives us leading order term ng with

oo 2 2 2 2 \-2
= Y@ s [ g Lo e,
q 7)o 1+4+2g ZpeL/g )\g,p(tQ + /\zp)—l

where the relative excitation energy A, , > 0, and g > 0 are defined
by

1 V(0)kit
Ao = =(Ip> = |p — £ =1 F
L,p 2(|p| |p | ) 9 gé 2(27_[_)3
® Second term is the error term.

© Last term tends to 0 in the n — oo.
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A comment on the error estimation.
n
We estimate the <Q, > Em(A)Q>: in terms of kg and the bootstrap
m=1

quantity = := sup nq
qeZ?

ng = lg(¢, Vo) he(a) ™ + C'k2e(q) 2 + € (ke
Bootstrap estimates:
@ We know ng <1 and e(q) < %
® We also proved that the leading order |ng| < Cikple(q)™t .
© Then the bootstrap quantity is controlled by

_3
=< sup no+C (kF 2=h 4 k;lz%) < Ckpt.
q

® Then we do one bootstrap step and the error becomes
1
€0l < ok *e(q) .
And we have the result.
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Thank you for the attention!




