Momentum distribution of a high density Fermi gas in Random Phase Approximation

Diwakar Naidu

Università degli studi di Milano

September 10, 2025

Joint work with Niels Benedikter and Sascha Lill

Supported by ERC grant No. 101040991 "FermiMath"

Consider N spinless fermions on a torus $\mathbb{T}^3 := [0, 2\pi]^3$.

Hilbert Space:
$$\mathcal{H}^{(N)} := L_a^2(\mathbb{T}^{3N}) \cong \bigwedge_{i=1}^N L^2(\mathbb{T}^3)$$

$$\forall \psi \in \mathcal{H}^{(N)}, \psi(\ldots, x_{\pi(i)}, x_{\pi(j)}, x_{\pi(k)}, \ldots) = (-1)^{\pi} \psi(\ldots, x_i, x_j, x_k, \ldots)$$

Hamilton operator:

$$H_N := -\sum_{j=1}^N \Delta_{x_j} + \lambda \sum_{1 \leq i < j \leq N} V(x_i - x_j) \quad \text{with} \quad V : \mathbb{R}^3 \to \mathbb{R}$$

Mean-field Scaling regime: $N \to \infty$, weak interaction potential, mean particle distance \ll interaction range

⇒ Balance kinetic energy and interaction energy

Setting

Consider N spinless fermions on a torus $\mathbb{T}^3 := [0, 2\pi]^3$.

Hilbert Space:
$$\mathcal{H}^{(N)} := L_a^2(\mathbb{T}^{3N}) \cong \bigwedge_{i=1}^N L^2(\mathbb{T}^3)$$

$$\forall \psi \in \mathcal{H}^{(N)}, \psi(\ldots, x_{\pi(i)}, x_{\pi(j)}, x_{\pi(k)}, \ldots) = (-1)^{\pi} \psi(\ldots, x_i, x_j, x_k, \ldots)$$

Hamilton operator:

$$H_N := -\sum_{j=1}^N \Delta_{x_j} + \lambda \sum_{1 \leq i < j \leq N} V(x_i - x_j) \quad ext{with} \quad V: \mathbb{R}^3 o \mathbb{R}$$

Mean-field Scaling regime: $N \to \infty$, weak interaction potential, mean particle distance \ll interaction range

$$\Rightarrow \lambda \sim N^{-\frac{1}{3}}$$

For V=0,

$$\psi_{\mathsf{GS}}(x_1, x_2, \dots, x_N) = \bigwedge_{j=1}^{N} \left((2\pi)^{-3/2} e^{ik_j \cdot x} \right)$$

$$= \frac{1}{\sqrt{N!}} \det \left((2\pi)^{-3/2} e^{ik_j \cdot x_i} \right)_{j,i=1}^{N} \quad \text{with} \quad k_j \in \mathbb{Z}^3$$

Fermi ball:

$$B_{
m F} \coloneqq \left\{ k \in \mathbb{Z}^3 : |k| \le k_{
m F}
ight\} \quad ext{with } {\it N} = |B_{
m F}| \quad ext{and} \quad k_{
m F} \sim {\it N}^{rac{1}{3}}$$



For V=0,

$$\begin{split} \psi_{\mathsf{GS}}(x_1, x_2, \dots, x_N) &= \bigwedge_{j=1}^N \left((2\pi)^{-3/2} e^{ik_j \cdot x} \right) \\ &= \frac{1}{\sqrt{N!}} \det \left((2\pi)^{-3/2} e^{ik_j \cdot x_j} \right)_{j,i=1}^N \quad \text{with} \quad k_j \in \mathbb{Z}^3 \end{split}$$

Fermi ball:

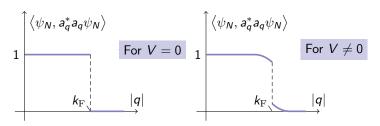
$$B_{
m F} \coloneqq \left\{ k \in \mathbb{Z}^3 : |k| \le k_{
m F}
ight\} \quad ext{with } \mathcal{N} = |B_{
m F}| \quad ext{and} \quad k_{
m F} \sim \mathcal{N}^{rac{1}{3}}$$

For $V \neq 0$, in Hartree-Fock approximation, we have

$$\psi = \frac{1}{\sqrt{N!}} \det \left(\phi_j(x_i) \right)_{j,i=1}^N,$$

for N orthonormal functions $\{\phi_j: j=1,\ldots,N\} \subset L^2(\mathbb{T}^3)$, which minimizes $\langle \psi, H_N \psi \rangle$ in our setting.

Momentum Distribution: $n_q = \langle \psi, a_q^* a_q \psi \rangle$, for $q \in \mathbb{Z}^3$, with a_q^* , a_q fermionic creation and annihilation operators on $\mathcal{F} := \bigoplus_{a=0}^N L_a^2(\mathbb{T}^{3n})$ with $\Omega = (1,0,0,\ldots)$ the vacuum state.



In the Hartree-Fock approximation too,

$$\left\langle \psi, a_q^* a_q \psi \right\rangle = egin{cases} 0 & \text{for } q \in B_{
m F}^c \\ 1 & \text{for } q \in B_{
m F}^c \end{cases}$$

And beyond Hartee-Fock?

Main Result

Theorem [Benedikter, Lill, N. (about to appear)] For interaction potential satisfying $\hat{V} \in \ell^1(\mathbb{Z}^3)$, $\hat{V} \geq 0$, $\hat{V}(0) = 0$ and $\hat{V}(k) = \hat{V}(-k)$. Then, for any sequence of k_F with $k_F \to \infty$ and $N = N(k_F) := |B_{k_F}(0)|$, \exists a sequence of trial states $(\Psi_{N(k_F)})_{k_F}$ with $\Psi_N \in L^2_a(\mathbb{T}^{3N})$ such that

• Ψ_N is energetically close to the ground state in the sense that for any $\varepsilon > 0$ there exists a $C_{\varepsilon} > 0$ such that $\forall k_{\rm F}$ we have

$$\langle \Psi_N, H_N \Psi_N \rangle - E_{\rm GS} \leq C_\varepsilon k_{\rm F}^{1-\frac{1}{6}+\varepsilon} \; , \label{eq:psi_sigma}$$

• and \exists constants $C_1, C_2 > 0$, depending on $\|\hat{V}\|_1$, s.t. $\forall k_{\mathrm{F}}$ and $q \in \mathbb{Z}^3$,

$$n(q) = \left\langle \Psi_N, a_q^* a_q \Psi_N
ight
angle = egin{cases} n_q^{
m b} + \mathcal{E}_q & ext{for } |q| \geq k_{
m F} \ 1 - n_q^{
m b} + \mathcal{E}_q & ext{for } |q| < k_{
m F} \end{cases},$$

where $n_q^{\rm b}$, the bosonized excitation density, satisfying $|n_q^{\rm b}| \le C_1 k_{\rm F}^{-1} e(q)^{-1}$ and the error $|\mathcal{E}_q| \le C_2 k_{\rm F}^{-\frac{7}{4}} e(q)^{-1}$, with e(q) being the excitation energy.

Sketch of the proof

Consider $\psi_N \in \mathcal{H}^{(N)}$ such that

$$\langle \psi_N, H_N \psi_N \rangle = c_{\rm KE} k_{\rm F}^5 + c_{\rm DI} k_{\rm F}^5 + c_{\rm EI} k_{\rm F}^3 + c_{\rm RPA} k_{\rm F} + o(k_{\rm F}), \quad \text{as} \quad N \to \infty$$

where $c_{\mathrm{RPA}} k_{\mathrm{F}}$ is energy of the Random Phase approximation.

Construction of such ψ_N : We use

1. Particle-Hole transformation: $R:\mathcal{F}\to\mathcal{F}$, a unitary transformation acting as

$$R^*a_q^*R \coloneqq egin{cases} a_q^* & ext{if } q \in B_{ ext{F}}^c \ a_q & ext{if } q \in B_{ ext{F}} \end{cases}$$

2. An almost-bosonic Bogoliubov transformation: $T: \mathcal{F} \to \mathcal{F}$, a unitary operator defined explicitly as $T = e^{\mathcal{K}}$,

$$\mathcal{K} = rac{1}{2} \sum_{\ell \in \mathbb{Z}_+^3} \sum_{r,s \in L_\ell} \mathcal{K}(\ell)_{r,s} \left(b_r(\ell) b_{-s}(-\ell) - b_{-s}^*(-\ell) b_r^*(\ell)
ight)$$

We defined our T using b, b^* , the quasi-bosonic pair operators, defined as

$$b_q(k) = a_{q-k}a_q$$
, $b_q^*(k) = a_q^*a_{q-k}^* \quad \forall q \in L_k$

where $L_k := \{q : q \in B_{\mathrm{F}}^c \cap (B_{\mathrm{F}} + k)\}.$

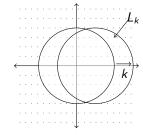
These pair operators follow the Quasi-bosonic canonical commutation relation (QBCCR)

$$[b_{p}(k), b_{q}(\ell)] = [b_{p}^{*}(k), b_{q}^{*}(\ell)] = 0,$$

$$[b_{p}(k), b_{q}^{*}(\ell)] = \delta_{p,q}\delta_{k,\ell} + \epsilon_{p,q}(k,\ell),$$

where

$$\epsilon_{p,q}(\mathbf{k},\ell) = -\left(\delta_{p,q} \mathbf{a}_{q-\ell}^* \mathbf{a}_{p-k} + \delta_{p-k,q-\ell} \mathbf{a}_q^* \mathbf{a}_p\right)$$



Then the **momentum distribution** of the trial state ψ_N is

$$n_q = \left\langle \psi_N, a_q^* a_q \psi_N \right\rangle = \begin{cases} \left\langle \Omega, T^* a_q^* a_q T \Omega \right\rangle & \text{if } q \in B_{\mathrm{F}}^c \\ 1 - \left\langle \Omega, T^* a_q^* a_q T \Omega \right\rangle & \text{if } q \in B_{\mathrm{F}} \end{cases}.$$

We do an iterated Duhamel expansion .

Definition Let A be a family of symmetric operators $A(\ell)$, for any $\ell \in \mathbb{Z}_*^3$, with $A(\ell) : \ell^2(L_\ell) \to \ell^2(L_\ell)$. We define the quadratic operators for A as

$$\begin{split} Q_{1}(A) &:= \sum_{\ell \in \mathbb{Z}_{*}^{3}} \sum_{r,s \in L_{\ell}} A(\ell)_{r,s} \left(b_{r}^{*}(\ell) b_{s}(\ell) + b_{s}^{*}(\ell) b_{r}(\ell) \right) \\ Q_{2}(A) &:= \sum_{\ell \in \mathbb{Z}_{*}^{3}} \sum_{r,s \in L_{\ell}} A(\ell)_{r,s} \left(b_{r}(\ell) b_{-s}(-\ell) + b_{-s}^{*}(-\ell) b_{r}^{*}(\ell) \right) \,. \end{split}$$

Then write the expansion in terms of these quadratic operators.

Doing *n* Duhamel steps we arrive at

$$\langle \Omega, T_1^* a_q^* a_q T_1 \Omega \rangle = \frac{1}{2} \sum_{\ell \in \mathbb{Z}_*^3} \mathbb{1}_{L_\ell}(q) \sum_{\substack{m=2, \\ m: even}}^{n+1} \frac{((2K(\ell))^m)_{q,q}}{(2m)!}$$

$$-\frac{1}{2} \left\langle \Omega, \sum_{m=1}^n \tilde{E}_m(\Theta_K^n(P^q)) \Omega \right\rangle$$

$$-\frac{1}{2} \int_{\Delta^n} d^n \underline{\lambda} (-1)^n \left\langle \Omega, \left(T_{\lambda_n}^* Q_{\sigma(n)}(\Theta_K^{n+1}(P^q) T_{\lambda_n}) \Omega \right\rangle$$
where, $\Theta_K^n(P^q) = \underbrace{\{K, \dots \{K, P^q\} \dots\}}_{n \text{times}} \text{ and } \sigma(n) = \begin{cases} 1 & \text{for } n \text{ odd} \\ 2 & \text{for } n \text{ even} \end{cases}$

$$\tilde{E}_m(P^q) := -\int d^m \underline{\lambda} T_{\lambda_m}^* E_{Q_{\sigma(m-1)}} \left(\Theta_K^{m-1}(P^q)\right) T_{\lambda_m}. \tag{1}$$

Then in the limit $n \to \infty$ we get

$$egin{aligned} \left\langle \Omega,\, T_1^* a_q^* a_q \, T_1 \Omega
ight
angle &= rac{1}{2} \sum_{\ell \in \mathbb{Z}_*^3} \mathbb{1}_{L_\ell}(q) ig(\cosh(2K(\ell)) - 1 ig)_{q,q} \ &- rac{1}{2} \left\langle \Omega, \sum_{m=1}^\infty ilde{\mathcal{E}}_m(\Theta_K^n(P^q)) \Omega
ight
angle \;. \end{aligned}$$

1 First term gives us leading order term $n_q^{\rm b}$ with

$$n_q^{
m b} \coloneqq \sum_{\ell \in \mathbb{Z}_*^3} \mathbb{1}_{L_\ell}(q) \; rac{1}{\pi} \int_0^\infty rac{g_\ell(t^2 - \lambda_{\ell,q}^2)(t^2 + \lambda_{\ell,q}^2)^{-2}}{1 + 2g_\ell \sum_{
ho \in L_\ell} \lambda_{\ell,
ho}(t^2 + \lambda_{\ell,
ho}^2)^{-1}} {
m d} t \; ,$$

where the relative excitation energy $\lambda_{\ell,p}>0$, and $g_\ell>0$ are defined by

$$\lambda_{\ell,p} \coloneqq rac{1}{2} (|p|^2 - |p - \ell|^2) \;, \qquad g_\ell \coloneqq rac{\hat{V}(\ell) k_{
m F}^{-1}}{2 (2\pi)^3} \,.$$

- 2 Second term is the error term.
- **3** Last term tends to 0 in the $n \to \infty$.

A comment on the error estimation.

We estimate the $\left\langle \Omega, \sum\limits_{m=1}^n E_m(A)\Omega \right\rangle$: in terms of $k_{\rm F}$ and the bootstrap quantity $\Xi:=\sup_{q\in\mathbb{Z}^3} n_q$

$$n_q = I_q(\ell, \hat{V}_\ell) k_{\mathrm{F}}^{-1} e(q)^{-1} + C' k_{\mathrm{F}}^{-2} e(q)^{-2} + C \left(k_{\mathrm{F}}^{-\frac{3}{2}} \Xi^{\frac{1}{2}} + k_{\mathrm{F}}^{-1} \Xi^{\frac{3}{4}} \right) e(q)^{-1}.$$

Bootstrap estimates:

- **1** We know $n_q \le 1$ and $e(q) \le \frac{1}{2}$.
- 2 We also proved that the leading order $|n_q^{\rm b}| \leq C_1 k_{\rm F}^{-1} e(q)^{-1}$.
- 3 Then the bootstrap quantity is controlled by

$$\Xi \leq \sup_{q \in \mathbb{Z}^3} n_q^{\mathrm{b}} + C \left(k_{\mathrm{F}}^{-\frac{3}{2}} \Xi^{\frac{1}{2}} + k_{\mathrm{F}}^{-1} \Xi^{\frac{3}{4}} \right) \leq C k_{\mathrm{F}}^{-1} \; .$$

4 Then we do one bootstrap step and the error becomes $|\mathcal{E}_q| \leq C_2 k_{\rm F}^{-\frac{7}{4}} {\rm e}(q)^{-1}$.

And we have the result.

Thank you for the attention!