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CONTEXT: QUANTUMHALL EFFECT
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THE UNPERTURBED SYSTEM
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The Hamiltonian is defined on the fermionic Fock space on a
lattice cylinder (with one-edge for simplicity of exposition)

H: Fr, = Fr, Fr =@, (P(AL)"

The state we consider is a Gibbs state at inverse temperature £ and
chemical potential (fixing the average particle number) u is

exp (— B(H — pN)
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A fundamental object is the 2-point function
S(Z,¢y) = lim lim Tr(Tazax -
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Interesting per se and is related to higher correlations by the Wick formula.
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THE UNPERTURBED SPECTRUM
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H is translation-invariant in x;, finite range; this allows to implement a Bloch-
Floquet decomposition, namely partial Fourier transform in the x; variable. 1 ’Ui/ 95
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There exists an interval [11-8, 1+8] such that the only spectrum is given by one
family of eigenvalues with exponentially decaying eigenfunctions (edge-mode)
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H(k1)E(k1) = e(k1)§(k1), |E(k1,@2)| < e 7.

The magnetic field is already included in H.

An example is given by the Haldane model.




H(N) = Z arxH (Z,y)ag + A Z p(axy, ro)azaz

f,gEAL fEAL

e @n(ﬁm) is analytic (coefficients decay exponentially in n) and quasi-periodic;
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the frequency is (approximately) Diophantine. |nOé|T = \nP

PROBLEM: the Hamiltonian is not diagonal in Fourier space (for simplicity in 1-dim)

n 1 : A N
(ki p) = 7 3 ) (H(2,9) 4+ Ay p(2)) = —0p H (k) + At
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We can express, at least heuristically, the resolvent as a power series
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Our expression in Fourier space becomes a multiple convolution
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Let us consider a «first order» term
(H (k) — 1) '@y (H(k 4+ nia) — p) !

* Itis most singular when both kand k+n,c are close to k., say around k. +2M.

* Then n,o isaround 271,

M+1
* By the Diophantine condition |na|p > C\?’L\*Q, n, must be big: \?’l1| >c2 2

* Then we can use the exponential decay of @in n.

* Burt this only works in general for terms with nonzero n,+ n, +...+ n,,(need of treating them differently).

Note: it is crucial to have one Fermi point.




RESULT (1) 16 1

For \)\’ < Ao,
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where g, is a renormalized 2-point function of 1-dimensional, relativistic fermions

. ilk—kr(V)-(2—y) X(k — kr(\)
gs Y)= 5L1 Z ivg () ko + v1 (M) (kl — kF()\))

with kg (0) = kp, v9(0) = 1, v1(0) = vp, and Zis a quasi-periodic modulation
Z(%) = 3 ey Zn(w2)e™ "% = {(kp, x2) + O())
The remainder is again subleading |R(&; §)| < Cyeclx2—v2| (1 + [lz — y||1+9)_1

The result is obtained through an inductive multi-scale analysis (Constructive Renormalization Group).
Note also that higher correlation functions are determined by Wick rule.




KUBO EDGE TRANSPORT COEFFICIEN

L
The Kubo transport coefficient express the linear response
to adiabatic perturbations.

We consider pertubation of the density near the edge.

H(nt) =H —ece™P,  P=3) .,u02)ataz

and we are interested in the (smeared) density n or current
operators j expectation values.

The Kubo Edge Conductance is the defined by the

Kubo formula 0(1/6) 0(1/6)
0
> : Depiction of jand n cut-offs.
Xédge = hIIll/ dte™ Tr ([Jl(ébe,ﬁ)a nt(ﬂé)]f)ﬁ,u,i) g !
* The same expression with n=j, in place of j, defines the Kubo Edge

lim = lim lim lim lim lim o 0
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RESULT (2) 61

The edge conductance is still quantized and the edge susceptibility is not
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BoNus: there exist explicit relations between the renormalized velocities and the modulation Z

The relation follows from the multi-scale analysis and the continuity equation (Ward identities)
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CONCLUSIONS & PERSPECTIVES

We computed quite explicitly the effect of quasi-periodicity on a non-interacting, traslation-
invariant fermionic system with a single edge-mode both at finite and infinite volume and
inverse temperature.

The effect amounts to a renormalization of some parameters: Fermi point, Fermi velocities.

In the infinite volume limit we can compute also edge transport coefficients.

Justification of linear response (also with H. Singh).

Multiple-edge modes (work in progress)
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