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Thouless conductance

Introduced by Edwards and Thouless in 1972 as a criterion for
localization in disordered (finite) systems (scaling theory of localization).

Idea: if a state is localized (not too close to the boundary) it should be
insensitive to boundary conditions (B.C.).

Thouless conductance (or parameter) is “defined” as :

gT :=
δE

∆E

where δE is a measure of sensitivity to B.C. and ∆E the level spacing of
the system (at the Fermi energy where conduction takes place).
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gT as a (dimensionless) conductance

If the material as conductivity and if the size of the system is L >> latom,
the material exhibits diffusive behavior.

The uncertainty in energy is related to the time t = L2

D needed to diffuse
from one end to the other : δE × t & ~.

Einstein relation gives σ = e2D
dn

dE
, with σ the conductivity and

dn

dE
=

1

V ×∆E

the density of states (per unit volume and unit energy).The conductance
is thus (A = cross-sectional arera, i.e. V = A× L)

G =
σA

L
.

e2

~
gT ,

with equality iff the uncertainty relation is an equality.
Even if it is heuristic, gT is widely accepted as a measure of conductance.
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A mathematical definition for gT

Main issue: define δE

Consider a finite system described by a Jacobi matrix

(h(k)ψ)(x) = Jxψ(x + 1) + λxψ(x) + Jx−1ψ(x − 1)

from x = 1 to x = L with Bloch type B.C.

ψ(L + 1) = eikLψ(1), ψ(0) = e−ikLψ(L).

Various definitions have been proposed for δE ,

the variation of energy level from periodic to antiperiodic B.C., i.e.
from E (0) to E (πL ) where E (k) is an eigenvalue of h(k),

the curvature
1

L2

∣∣∣∣d2Edk2

∣∣∣∣
k=0

of an eigenvalue at the edge of a band.
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A mathematical definition for gT

How to define δE? We shall consider the first proposal.

Let hper be the periodic extension of the sample to `2(Z). Its spectrum
consists in L bands, each corresponding to an eigenvalue E (k) of h(k) as
k varies from 0 (periodic) to π/L (antiperiodic).

We fix an interval I (e.g. small and around the Fermi energy) and
consider algebraic averages within I

∆E =
|I |

number of levels in I
, δE =

|sp(hper) ∩ I |
number of levels in I

.

This leads to the following

Definition

The Thouless conductance for the energy interval I is

gT (I ) =
|sp(hper) ∩ I |

|I |
.
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gT as a (dimensionless) conductance II

Let I = (µl , µr ) and assume the sample is connected to a left and right
reservoir, at zero temperature and chemical potentials µl and µr .

eT (I ) := |sp(hper) ∩ I |, called Thouless energy, is identified with the
current through the sample driven by the voltage difference between

these reservoirs. Hence gT (I ) =
eT (I )

µr − µl
is the conductance.

This identification holds provided some ”optimal feeding” assumption
holds: the time it takes for an electron to leave the right reservoir and
occupy a vacant state is smaller than the time it takes to go through the
sample. Otherwise the current should be less than eT (I ).

Our goal: make these statements precise, i.e. derive Thouless
conductance formula from first principles of quantum statistical
mechanics.
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Quasi-free systems

Fermi gas in the independent electrons approximation:

h = one particle space.

h = hamiltonian of one fermion.

The total Hilbert space is then H = Γ−(h) = ⊕∞n=0 ∧n h.

The hamiltonian is H = dΓ(h), i.e.

H f1 ∧ · · · ∧ fn =
n∑

j=1

f1 ∧ · · · ∧ hfj ∧ · · · ∧ fn.

The algebra of observables O = CAR(h): the C∗-algebra generated
by annihilation/creation operators a(f )/a∗(f ).
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Electronic black box model

A sample S coupled to 2 reservoirs of electrons Rl/r described by a free
fermi gas at thermal equilibrium (at inverse temperature β and chemical
potential µl/r ) and in the independent electron approximation.

We thus consider a quasi-free system with

One particle space: h = hl ⊕ hS ⊕ hr .

One particle hamiltonian: h = h0 + hT where

h0 = hl ⊕ hS ⊕ hr , hT = |χl〉〈ψl |+ |ψl〉〈χl |+ |χr 〉〈ψr |+ |ψr 〉〈χr |,

(hS , hS): finite-dimensional system (the sample), ψl/r ∈ hS .

(hl/r , hl/r ): “free” reservoirs. Without loss of generality we may assume
that δl/r are cyclic vectors for hl/r . If νl/r is the spectral measure for hl/r
and δl/r we may now take

hl/r = L2(R,dνl/r (E )), hl/r = mult par E , δl/r (E ) ≡ 1.
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Electronic black box model

The hamiltonian of the system is

H = dΓ(h) = dΓ(h0)+a∗(χl)a(ψl)+a∗(ψl)a(χl)+a∗(χr )a(ψr )+a∗(ψr )a(χr ),

and for any A ∈ O, τt(A) := eitHAe−itH , e.g. for f ∈ h one has
τt(a

#(f )) = a#(eithf ).

Initial state of the system: quasi-free state ω0 associated to the density
matrix

% = (1 + eβ(hl−µl ))−1 ⊕ ρS ⊕ (1 + eβ(hr−µr ))−1,

i.e. ω0 is such that

ω0(a∗(gn) · · · a∗(g1)a(f1) · · · a(fm)) = δnmdet(〈fi , %gj〉)i,j .
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Landauer-Büttiker formula

Thouless vs Landauer conductance
Conductances and ac spectrum

Electronic black box model

The hamiltonian of the system is

H = dΓ(h) = dΓ(h0)+a∗(χl)a(ψl)+a∗(ψl)a(χl)+a∗(χr )a(ψr )+a∗(ψr )a(χr ),

and for any A ∈ O, τt(A) := eitHAe−itH , e.g. for f ∈ h one has
τt(a

#(f )) = a#(eithf ).

Initial state of the system: quasi-free state ω0 associated to the density
matrix

% = (1 + eβ(hl−µl ))−1 ⊕ ρS ⊕ (1 + eβ(hr−µr ))−1,

i.e. ω0 is such that

ω0(a∗(gn) · · · a∗(g1)a(f1) · · · a(fm)) = δnmdet(〈fi , %gj〉)i,j .

L. Bruneau Thouless conductance, Landauer-Büttiker currents and spectrum
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The current observable

The observable which describes the flux of particles out of Rr is

Jr := −i [H,Nr ] = a∗(iχr )a(ψr ) + a∗(ψr )a(iχr ),

where Nr = dΓ(1lr ) is the number of fermions in reservoir Rr (1lr is the
projection onto hr ' 0⊕ 0⊕ hr ).

We are interested in

ω+(Jr ) := lim
T→+∞

1

T

∫ T

0

ω0 ◦ τt(Jr )dt = ω+(Jr ),

where ω+ = w ∗ − lim
1

T

∫ T

0

ω0 ◦ τ t is the NESS of the system (if it

exists).

L. Bruneau Thouless conductance, Landauer-Büttiker currents and spectrum
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Landauer-Büttiker formula

Thouless vs Landauer conductance
Conductances and ac spectrum

The current observable

The observable which describes the flux of particles out of Rr is

Jr := −i [H,Nr ] = a∗(iχr )a(ψr ) + a∗(ψr )a(iχr ),

where Nr = dΓ(1lr ) is the number of fermions in reservoir Rr (1lr is the
projection onto hr ' 0⊕ 0⊕ hr ).

We are interested in

ω+(Jr ) := lim
T→+∞

1

T

∫ T

0

ω0 ◦ τt(Jr )dt = ω+(Jr ),

where ω+ = w ∗ − lim
1

T

∫ T

0

ω0 ◦ τ t is the NESS of the system (if it

exists).

L. Bruneau Thouless conductance, Landauer-Büttiker currents and spectrum
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Landauer-Büttiker formula

The wave operators w± := s − lim
t→±∞

eithe−ith01lac(h0) exist and are

complete. The scattering matrix s = w∗+w− acts as multiplication by

s(E ) =

(
sll(E ) slr (E )
srl(E ) srr (E )

)
.

T (E ) := |slr (E )|2 = |srl(E )|2 is the transmission probability between the
reservoirs at energy E .

Theorem (AJPP ’07)

If spsc(h) = ∅, ω+(A) := lim 1
T

∫ T

0
ω0 ◦ τ t(A)dt exists ∀A ∈ O and

ω+(Jr ) =
1

2π

∫
R
T (E )×

(
1

1 + eβ(E−µr )
− 1

1 + eβ(E−µl )

)
dE .

Remark : T (E ) = 4|〈ψl , (h−E−i0)−1ψr 〉|2 ImFl(E ) ImFr (E )
where Fl/r (E ) := 〈χl/r , (hl/r−E−i0)−1χl/r 〉. Hence T (E ) = 0 if
E /∈ spac(h`) ∩ spac(hr ).
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Landauer conductance

Assume we are at zero temperature and µl < µr , the Landauer
conductance is then

gL(I ) =
ω+(Jr )
µr − µl

=
1

2π(µr − µl)

∫ µr

µl

T (E )dE .

Take now as a sample our finite system, i.e. hS = `2([1, L]), and

(hSψ)(x) = Jxψ(x + 1) + λxψ(x) + Jx−1ψ(x − 1)

with Dirichlet boundary condition and ψl = δ1, ψr = δL.
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Crystal EBB

Assume that the left/right reservoir are such that h = hper, i.e. the left,
resp. right, reservoir is the restriction of hper to `2((−∞, 0]), resp.
`2([L + 1,∞)), with Dirichlet B.C. and χl/r = J0/Lδ0/L+1, so-called
“matching wire” (Economou-Soukoulis ’91) or “optimal feeding”.

One then have T (E ) = 1 for E ∈ sp(hper) while T (E ) = 0 for
E /∈ sp(hper) so that

gL(I ) =
1

2π(µr − µl)

∫ µr

µl

T (E )dE =
1

2π

|sp(hper) ∩ I |
|I |

=
1

2π
gT (I ),

where I = (µl , µr ).

Remark: if optimal feeding fails then the current should be less, i.e.
gT (I ) should give an upper bound.
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Crystallined Landauer-Büttiker formula

We come back to arbitrary reservoirs but now consider the following
sample. Given an integer N:

h
(N)
S is the restriction of hper to `2([1,NL]), i.e. a finite Jacobi matrix

whose coefficients are L-periodic, with Dirichlet B.C. and with ψl = δ1
and ψr = δNL.

We denote by ω
(N)
+ (J (N)

r ) the corresponding current expectation value in
the NESS. We are interested in its large N limit.

Remark: Similar idea of “crystallizing” or “periodizing” appears in a band
random matrix approach by Cassati-Guarneri-Maspero (’97).
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Crystallined Landauer-Büttiker formula

Let h
(l)
per, resp. h

(r)
per, denote the restriction of hper to `2((−∞, 0]), resp.

`2([1,∞)), with Dirichlet B.C. We denote by ml/r its Weyl m-function:

ml(E ) := 〈δ0, (h(l)per−E−i0)−1δ0〉, mr (E ) := 〈δ1, (h(r)per−E−i0)−1δ1〉.

The crystalline transmission coefficient is defined, for E ∈ sp(hper), as

Tcrys(E ) =
4J20 |1−J20ml(E )mr (E )|2 ImFl(E ) ImFr (E )

J40 |1−mr (E )Fl(E )|2|1−ml(E )Fr (E )|2 − |J20ml(E )−Fl(E )|2|J20mr (E )−Fr (E )|2
.

Property: 0 ≤ Tcrys(E ) ≤ 1.

For a crystal EBB Fl/r (E ) = J20ml/r (E ) and Tcrys(E ) ≡ 1.
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Theorem

〈Jr 〉crys := lim
N→∞

ω
(N)
+ (J (N)

r )

=
1

2π

∫
R
Tcrys(E )×

(
1

1 + eβ(E−µr )
− 1

1 + eβ(E−µl )

)
dE .

In particular, at zero temperature,

〈Jr 〉crys =
1

2π

∫ µr

µl

Tcrys(E )dE ≤ 1

2π
eT ((µl , µr )).

Thouless energy gives an upper bound for Landauer current, with
equality iff Tcrys(E ) ≡ 1 on (µl , µr ). Optimal feeding is identified to
reflectionless transport between the reservoirs. It holds for example for
crystal EBB (matching wires).
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Thouless conductance vs ac spectrum

Thouless’s idea is that a system exhibits localization if gT (I ) decays to 0
with L.
Let h∞ be a Jacobi matrix on `2(Z+) and hLper its periodic approximant

of size L, i.e. hLper coincide with h∞ on [1, L] and then is extended
periodically.

How does gL
T (I ) :=

|sp(hLper) ∩ I |
|I |

behaves as L→∞?

Theorem

If I is an open interval such that spac(h∞) ∩ I = ∅ then gL
T (I )→ 0.

If moreover h∞ is ergodic then it is an equivalence.

First part follows from Gesztesy-Simon (’96) results, the second part was
proven by Last in is thesis (’94).
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Landauer conductance vs ac spectrum

In the Landauer approach, instead of first crystallizing and then taking
the size of the sample to infinity, one may simply take the size of the
sample to infinity.
That is, consider the EBB model where the sample is the restriction of
h∞ to [1, L] and let ω+,L(Jr ,L) denote the corresponding expectation
value of the charge current in the steady state.

Theorem

If I is an open interval such that lim inf
L→∞

ω+,L(Jr ,L) = 0 then

spac(h∞) ∩ I = ∅.

Remark: The reservoirs have to contain I in their ac spectra but
otherwise arbitrary.
The proof uses the connection between ω+,L(Jr ,L) and the transfer
matrices of h∞ combined with results by Last-Simon (’99).
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