

TD 4: Intégrales le long d'un chemin et formules de Cauchy

Exercice 1. Calculer les intégrales $\int_{\gamma} f(z) dz$ dans chacun des cas suivants. On commencera à chaque fois par représenter graphiquement le chemin γ .

- a) $f(z)=\mathrm{e}^z$ et γ le demi-cercle de centre 0, de rayon 3 allant de -3 à 3 dans le sens trigonométrique. Comparer avec $\int_{-3}^3 \mathrm{e}^x \,\mathrm{d}x$.
- **b)** $f(z) = z + \bar{z}$ et $\gamma = [i, 2i + 1]$,
- c) $f(z) = z + \bar{z}$ et $\gamma = [1, -1 + i]$,
- **d)** $f(z) = e^z$ et $\gamma = [2, 2 + 5i]$.
- e) $f(z) = \bar{z}$ et γ est l'arc de parabole d'équation $y = x^2$ reliant les points d'affixes 1 + i et 2 + 4i.
- f) $f(x + iy) = x + iy^2$ et γ est le demi-cercle joignant le point -i au point i dans le demi plan Re(z) > 0 suivi du segment [i, -i].

Exercice 2. Calculer $\int_{\gamma} z^n dz$ où γ est le cercle C(0,1) parcouru une fois dans le sens trigonométrique et $n \in \mathbb{Z}$.

Exercice 3. Calculer $\int_{\gamma} \frac{\mathrm{d}z}{z}$ où γ est l'arc de cercle d'origine de centre 0 et rayon R parcrouru dans le sens trigonométrique, partant du point d'affixe z=R et dont l'angle est 2π , π , $\frac{\pi}{2}$ et enfin $\alpha>0$ quelconque.

Exercice 4. Calculer les intégrales $I = \int_{\gamma} (z - \mathrm{i})^2 dz$ et $J = \int_{\gamma} (\sin z)(\cos z) dz$ où γ est le chemin défini sur [0,1] par $\gamma(t) = t + \mathrm{i} t^2$.

Exercice 5 (CC4 - 2021).

- a) Soit γ le chemin fermé constitué du segment [-1+i,1-i] suivi du demi-cercle de centre 0 allant de 1-i à -1+i et parcouru une fois dans le sens trigonométrique.
 - i) Représenter graphiquement γ puis en donner un paramétrage. On pourra donner un paramétrage du segment puis un paramétrage du demi-cercle.
 - ii) Justifier que $I_1 = \int_{\tilde{z}} \bar{z} dz$ est bien définie et la calculer.
 - iii) Justifier que $I_2 = \int_{\gamma} \cos(z^2) dz$ est bien définie et la calculer.

b) Soit maintenant γ le segment [2i, 1+i]. Montrer que $I_3 = \int_{\gamma} \frac{\mathrm{d}z}{z}$ est bien définie et la calculer.

Exercice 6. Montrer que la fonction définie par $f(z) = \frac{1}{z^2 - z}$ est bien définie sur $D(1,1) \setminus \{1\} = \{z \in \mathbb{C} \mid 0 < |z-1| < 1\}$ mais qu'elle n'a pas de primitive sur cet ensemble.

Exercice 7. Soient f et g deux fonctions C^1 sur un ouvert Ω et $\gamma:[a,b]\to\Omega$ un chemin.

a) Montrer la formule de l'intégration par parties

$$\int_{\gamma} f(z)g'(z) dz = \left[f(z)g(z) \right]_{\gamma(a)}^{\gamma(b)} - \int_{\gamma} f'(z)g(z) dz.$$

- **b)** Que devient cette formule si γ est un lacet?
- c) Calculer $\int_{\gamma} \frac{\mathrm{e}^{z^2}}{z^2} \, \mathrm{d}z$ où γ est le cercle unité parcouru une fois dans le sens trigonométrique.

Exercice 8. Soit $\Omega \subset \mathbb{C}$, $f:\Omega \to \mathbb{C}$ continue et <u>un</u> chemin $\gamma:[a,b] \to \mathbb{C}$ de classe C^1 tel que $\gamma([a,b]) \subset \Omega$. On définit $\xi:[a,b] \to \mathbb{C}$ par $\xi(t) = \overline{\gamma(t)}$.

- a) Vérifier que pour tout $t \in [a, b]$ la fonction $g(z) = \overline{f(\overline{z})}$ est bien définie en $z = \xi(t)$.
- **b)** Montrer que $\overline{\int_{\gamma} f(z) dz} = \int_{\xi} \overline{f(\overline{z})} dz$.
- c) On suppose que $\gamma(t)=\mathrm{e}^{2i\pi t}$. Montrer que $\overline{\int_{\gamma}f(z)\,\mathrm{d}z}=-\int_{\gamma}\overline{\frac{f(z)}{z^2}}\,\mathrm{d}z$.

Exercice 9. Soit $a,b \in \mathbb{R}_+^*$ et γ le bord du triangle de sommets les points d'affixe 0, a et ib parcouru dans le sens direct. Calculer $\int_{\gamma} \mathrm{e}^z \, \mathrm{d}z$ et $\int_{\gamma} \mathrm{Re} \left(\mathrm{e}^z \right) \, \mathrm{d}z$.

Exercice 10. Soit γ le bord d'un carré centré en l'origine, dont les côtés sont parallèles aux axes et orienté dans le sens direct. Montrer que $\int_{\gamma} \frac{\mathrm{d}z}{z\bar{z}} = 0$.

Exercice 11. Soit $f: \mathbb{C} \to \mathbb{C}$ continue. On considère $I = \int_{C(0,1)} f(z) \, \mathrm{d}z$ où C(0,1) est le cercle unité orienté dans le sens direct et on suppose que $|f(z)| \le 1$ pour tout $z \in C(0,1)$.

- a) Montrer que $|I| \leq 2\pi$.
- **b**) Calculer I si $f(z) = \overline{z}$.
- c) On suppose maintenant que $f: \mathbb{C} \to \mathbb{R}$ et que $I \in \mathbb{R}$. Montrer que $|I| \leq 4$.
- **d)** En supposant juste que $f: \mathbb{C} \to \mathbb{R}$, montrer que |I| < 4.

Exercice 12. Pour chacun des ouverts suivants dire s'il est étoilé ou non. Faites un dessin!

- a) Un disque.
- **b**) L'intérieur d'un carré.

- c) Le complémentaire d'un point.
- d) Le complémentaire d'une droite.
- e) Le complémentaire d'une demi-droite.
- f) Le complémentaire d'un segment.
- g) Le complémentaire de deux demi-droites disjointes et incluses dans la même droite.
- h) Le complémentaire d'un disque fermé.

Exercice 13. A l'aide des formules de Cauchy calculer les intégrales suivantes.

- a) $\int_{\gamma} \frac{\mathrm{d}z}{z^2+1}$ où γ est le cercle |z-i|=1 parcouru une fois dans le sens direct.
- **b**) $\int_{\gamma} \frac{\mathrm{d}z}{z^2 + 1}$ où γ est le cercle |z| = 2 parcouru une fois dans le sens direct.
- c) $\int_{\gamma} \frac{\mathrm{d}z}{z^2(z-1)}$ où γ est le cercle |z|=2 parcouru une fois dans le sens direct.
- d) $\int_{\gamma} \frac{\mathrm{d}z}{(z-4)(z^2+1)}$ où γ est le cercle |z|=2 parcouru une fois dans le sens direct.
- e) $\int_{\gamma} \frac{e^{2z}(z^2+3z-2)}{(z-1)^3}$ où γ est le cercle |z|=2 parcouru une fois dans le sens direct.
- f) $\int_{\gamma} \frac{e^{\frac{\pi z}{2}}}{z^2 + 1}$ où γ est le cercle |z| = 2 parcouru une fois dans le sens direct.

Exercice 14. Soient $\Omega \subset \mathbb{C}$ un ouvert contenant $\overline{D}(0,1)$ et $f:\Omega \to \mathbb{C}$ une fonction holomorphe. On note γ le cercle |z|=1 parcouru une fois dans le sens direct.

- a) Calculer les intégrales $I = \int_{\gamma} \left(2 + z + \frac{1}{z}\right) \frac{f(z)}{z} dz$ et $J = \int_{\gamma} \left(2 z \frac{1}{z}\right) \frac{f(z)}{z} dz$. On exprimera le résultat en fonction de valeurs particulières de la fonction f et/ou de ses dérivées.
- **b)** En déduire les valeur de $\frac{2}{\pi} \int_0^{2\pi} f(e^{it}) \cos^2\left(\frac{t}{2}\right) dt$ et $\frac{2}{\pi} \int_0^{2\pi} f(e^{it}) \sin^2\left(\frac{t}{2}\right) dt$.

Exercice 15. On cherche à calculer l'intégrale $I = \int_0^{2\pi} \frac{\mathrm{d}t}{2 + \cos(t)}$.

- **a**) Si $z = e^{i\theta}$, déterminer $z + \frac{1}{z}$.
- **b)** Déterminer une fonction $f: \mathbb{C} \to \mathbb{C}$ telle que $I = \int_{\gamma} f(z) dz$ où γ est le cercle |z| = 1 parcouru une fois dans le sens direct.
- \mathbf{c}) Calculer I.
- d) En utilisant le même raisonnement calculer les intégrales

$$J = \int_0^{2\pi} (\cos(t))^n dt \quad \text{et} \quad K = \int_0^{2\pi} \frac{1}{(5 - 3\sin(t))^2} dt.$$

3

Exercice 16 (Examen session 2 - Juin 2022). Le but de l'exercice est de montrer que les intégrales

$$I = \int_0^{+\infty} e^{it^2} dt, \quad J = \int_0^{+\infty} \cos(t^2) dt \quad \text{et} \quad K = \int_0^{+\infty} \sin(t^2) dt$$

convergent et de calculer leur valeur. On considère pour cela la fonction f définie sur $\mathbb C$ par $f(z)=\mathrm e^{iz^2}$. Etant donné R>0 on note Γ_R le lacet constitué de la concaténation des chemins :

- $\gamma_{1,R}$ le segment allant de z=0 à z=R,
- $\gamma_{2,R}$ l'arc de cercle de centre 0 d'angle $\frac{\pi}{4}$ et partant de z=R,
- $\gamma_{3,R}$ le segment allant de $z=Re^{i\pi/4}$ à z=0,

On notera également I_R l'intégrale $I_R = \int_0^R \mathrm{e}^{it^2} \,\mathrm{d}t.$

- a) Représenter graphiquement le lacet Γ_R .
- **b)** Montrer que pour tout R>0 on a $\int_{\Gamma_R} f(z) dz = 0$.
- c) Donner un paramétrage de chacun des 3 chemins $\gamma_{1,R}$, $\gamma_{2,R}$ et $\gamma_{3,R}$.
- **d**) Exprimer $\int_{\gamma_{1,R}} f(z) dz$ à l'aide de I_R .
- e) Montrer que $\int_{\gamma_{3,R}} f(z) dz = -e^{i\pi/4} \int_0^R e^{-t^2} dt$.
- f) Montrer que $\lim_{R\to +\infty} \int_{\gamma_{2,R}} f(z) \, \mathrm{d}z = 0$. Indication : on pourra utiliser que $\sin(x) \geq \frac{2}{\pi}x$ pour tout $x \in \left[0, \frac{\pi}{2}\right]$.
- g) Déduire des questions précédentes que I converge et donner sa valeur. On rappelle que $\int_0^{+\infty} e^{-t^2} dt$ converge et vaut $\frac{\sqrt{\pi}}{2}$.
- **h**) Donner les valeurs de J et K.

Exercice 17. Soit $a \in \mathbb{C}^*$ et r un réel tel que 0 < r < |a|. On note γ le cercle de centre a et de rayon r parcouru une fois dans le sens direct. Le but est de calculer l'intégrale $I = \int_{\mathbb{R}^n} \frac{\mathrm{d}z}{z\bar{z}}$.

4

- a) Représenter graphiquement γ . Peut-on affirmer que I=0 ? Pourquoi ?
- **b)** Montrer que pour tout $z \in \gamma$ on a $\bar{z} = \frac{r^2}{z-a} + \bar{a}$.
- c) En déduire que $I=\int_{\gamma} \frac{z-a}{z\left(z\bar{a}-\left(|a|^2-r^2\right)\right)}\,\mathrm{d}z.$
- **d**) Calculer I à l'aide de la formule de Cauchy.