

TD 2 : Séries entières et fonctions holomorphes remarquables

Exercice 1. Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières. On note R_a et R_b leur rayon de convergence respectif.

- a) Montrer que si $a_n = O(b_n)$ alors $R_a \ge R_b$.
- **b)** Montrer que si $|a_n| \sim |b_n|$ alors $R_a = R_b$.

Exercice 2. Déterminer le rayon de convergence des séries entières suivantes.

$$\mathbf{a)} \sum_{n=1}^{\infty} \frac{z^n}{n^n},$$

$$\mathbf{a}) \sum_{n=1}^{\infty} \frac{z^n}{n^n}, \qquad \qquad \mathbf{c}) \sum_{n=0}^{\infty} \frac{(np)!}{(n!)^q} z^n \text{ où } p, q \in \mathbb{N}^*, \qquad \qquad \mathbf{e}) \sum_{n>0} \frac{1}{4^n} z^{2n}, \qquad \qquad \mathbf{g}) \sum_{n=0}^{\infty} z^{n!},$$

e)
$$\sum_{n>0} \frac{1}{4^n} z^{2n}$$
,

$$\mathbf{g})\sum_{n=0}^{\infty}z^{n!}$$

$$\mathbf{b)} \sum_{n=2}^{\infty} \frac{z^n}{\ln(n)},$$

b)
$$\sum_{n=2}^{\infty} \frac{z^n}{\ln(n)}, \qquad d) \sum_{n=1}^{\infty} \frac{z^n}{2n^2 - n},$$

f)
$$\sum_{n>0}^{n\geq 0} \frac{1}{2-\sin(n)} z^n$$
, h) $\sum_{n=0}^{n=0} 2^n z^{n^2}$.

h)
$$\sum_{n=0}^{\infty} 2^n z^{n^2}$$
.

Exercice 3. Déterminer le rayon de convergence puis calculer la somme des séries entières sui-

$$\mathbf{a}) \sum_{n=0}^{\infty} 3^n z^n.$$

c)
$$\sum_{n=0}^{\infty} (2n+1)z^{2n}$$
.

b)
$$\sum_{n=0}^{\infty} a_n z^n, \quad a_n = \begin{cases} 3^n, & n \text{ pair,} \\ 2^{-n}, & \text{sinon.} \end{cases}$$

d)
$$\sum_{n=0}^{\infty} \frac{\sin(n\theta)}{n!} z^n$$
, $\theta \in \mathbb{R}$.

Exercice 4 (CC3 - 2021). Pour chacune des trois séries entières ci-dessous : déterminer son rayon de convergence, représenter graphiquement son disque ouvert de convergence puis calculer la somme de la série dans ce disque.

a)
$$\sum_{n>0} 2^{n+1} (z-1)^n$$
.

b)
$$\sum_{n \ge 0} 3^n (n+2)(n+1)z^n$$
.

a)
$$\sum_{n\geq 0} 2^{n+1} (z-1)^n$$
. b) $\sum_{n\geq 0} 3^n (n+2)(n+1)z^n$. c) $\sum_{n\geq 0} (-1+(-1)^n)) z^n$.

Exercice 5. Soit $z_0 \in \mathbb{C}^*$. Déterminer le rayon de convergence et calculer la somme de la série entière, centrée en z_0 , $\sum_{n=0}^{\infty} \frac{(-1)^n}{z_0^{n+1}} (z-z_0)^n$.

Exercice 6. Montrer les formules trigonométriques suivantes, valables pour tour tous $z, w \in \mathbb{C}$.

- a) $\sin^2(z) + \cos^2(z) = 1$.
- **b)** $\sin(z+w) = \sin(z) \cos(w) + \cos(z) \sin(w)$.
- c) $\cos(z+w) = \cos(z) \cos(w) \sin(z) \sin(w)$.

- **d**) $\sin(\overline{z}) = \overline{\sin(z)}$ et $\cos(\overline{z}) = \overline{\cos(z)}$.
- e) Montrer que les fonctions sin et cos ne sont pas bornées sur C.

Exercice 7 (Logarithmes). On note \ln le logarithme népérien défini sur \mathbb{R}_+^* et Log la détermination principale du logarithme définie sur $\mathbb{C} \setminus \mathbb{R}_-$ par $\operatorname{Log}(z) = \ln(|z|) + \operatorname{i} \operatorname{arg}_{]-\pi,\pi[}(z)$.

- a) Calculer Log(i), Log(-i), Log(-1+i) et Log(-1-i).
- **b)** On considère maintenant la détermination du logarithme définie sur $\mathbb{C} \setminus \mathbb{R}_+$ par $\log(z) = \ln(|z|) + \mathrm{i} \arg_{10,2\pi}[(z)]$. Calculer $\log(\mathrm{i})$, $\log(-\mathrm{i})$, $\log(-1+\mathrm{i})$ et $\log(-1-\mathrm{i})$.

Exercice 8 (Logarithme principal). On note Log la détermination principale du logarithme.

- a) On pose $z_0 = 1 i\frac{\pi}{3}$ et $z_1 = 1 + i\frac{5\pi}{3}$. Comparer $Log(e^{z_k})$ avec z_k .
- **b)** Sur quelle partie de \mathbb{C} a-t-on $\text{Log} \circ \exp = \text{Id}$?
- c) Pour quels $z \in \mathbb{C}$ les quantités $\operatorname{Log}\left(\frac{z}{i}\right)$ et $\operatorname{Log}(z)$ sont-elles toutes les deux bien définies? Exprimer alors $\operatorname{Log}\left(\frac{z}{i}\right)$ en fonction de $\operatorname{Log}(z)$.
- d) Pour quels $z \in \mathbb{C}$ les quantités $\text{Log}(z^2)$ et Log(z) sont-elles toutes les deux bien définies? Pour quels z a-t-on $\text{Log}(z^2) = 2\text{Log}(z)$?
- e) Reprendre l'exercice avec les déterminations suivantes du logarithme :

$$\log_{]-\frac{\pi}{2},\frac{3\pi}{2}[}(z) = \ln(|z|) + i \arg_{]-\frac{\pi}{2},\frac{3\pi}{2}[}(z), \quad \log_{]0,2\pi[}(z) = \ln(|z|) + i \arg_{]0,2\pi[}(z).$$

Exercice 9 (Racine carrée). On considère la fonction définie par $r(z) = \exp\left(\frac{1}{2}\text{Log}(z)\right)$.

- a) Sur quel ensemble $\Omega \subset \mathbb{C}$ cette formule est-elle définie?
- **b)** Montrer que r est holomoprhe sur Ω et que $r^2 = \mathrm{Id}$.
- c) Montrer que r est un prolongement de la fonction racine carrée $\mathbb{R}_+^* \ni x \mapsto \sqrt{x} \in \mathbb{R}_+^*$.
- d) Déterminer $r(\Omega)=\{r(z),\ z\in\Omega\}$. Comment peut-on définir la fonction r en terme de racine carrée complexe ?
- e) Calculer r(i) et r(-1+i). Déterminer z_1 et z_2 tels que $z_1,z_2,z_1z_2\in \Omega$ mais $r(z_1)r(z_2)\neq r(z_1z_2)$.
- f) Déterminer une fonction racine carrée R définie et holomorphe sur un domaine (ouvert connexe par arcs) de \mathbb{C} , qui prolonge la fonction racine carrée de \mathbb{R}_+^* et telle que R(-1) soit définie.

Exercice 10 (Arctangente). La fonction tangente est définie par $\tan(z) = \frac{\sin(z)}{\cos(z)} = \frac{e^{iz} - e^{-iz}}{i(e^{iz} + e^{-iz})}$.

- a) Sur quel ensemble de $\mathbb C$ la fonction an est-elle bien définie?
- b) Etant donné $w \in \mathbb{C}$ résoudre l'équation $\tan(z) = w$. Pour quelle(s) valeur(s) de w l'équation n'a-t-elle pas de solution? Indication : on pourra commencer par montrer que $\tan(z) = w$ ssi $\frac{Z-1}{Z+1} = iw$ où $Z = \mathrm{e}^{i2z}$.
- c) Soit $h(w) = \frac{1+\mathrm{i} w}{1-\mathrm{i} w} = -\frac{w-\mathrm{i}}{w+\mathrm{i}}$. Déterminer l'ensemble $\Omega = h^{-1}\left(\mathbb{C}\setminus\mathbb{R}_{-}\right) = \{w\in\mathbb{C}\mid h(w)\in\mathbb{C}\setminus\mathbb{R}_{-}\}$.
- d) Pour tout $w \in \Omega$ on pose $f(w) = \frac{1}{2i} \text{Log}(h(w))$ où Log désigne la détermination principale du logarithme. Montrer que f est holomorphe et déterminer sa dérivée.
- e) Quelle est la restriction de f à \mathbb{R} ?