

TD n°2: Suites de nombres réels

Exercice 1. Écrire à l'aide de quantificateurs les propriétés suivantes :

- a) La suite u est positive à partir d'un certain rang.
- b) La suite u est constante à partir d'un certain rang. Comment s'appelle une telle suite?
- c) La suite u est croissante à partir d'un certain rang.

Exercice 2. Une suite arithmétique de raison r est-elle croissante? décroissante? constante? Mêmes questions pour une suite géométrique de raison r.

Exercice 3. Soient u et v deux suites bornées et $\lambda \in \mathbb{R}$. Montrer que u + v et λu sont bornées.

Exercice 4. Montrer qu'une suite u est majorée, resp. minorée, si et seulement si elle est majorée, resp. minorée, à partir d'un certain rang.

Exercice 5. Une suite arithmétique de raison r est-elle majorée? minorée? bornée? Mêmes questions pour une suite géométrique de raison r.

Exercice 6. Donner un exemple de suite:

- a) Croissante et majorée.
- b) Ni croissante, ni décroissante.
- c) Ni majorée, ni minorée.
- d) Croissante, ni strictement croissante à partir d'un certain rang ni stationnaire.

Exercice 7. Écrire la définition de "la suite u est divergente".

Exercice 8. Montrer que la suite de terme général $u_n = \frac{3n-1}{2n+3}$ tend vers 3/2 en utilisant la définition.

Exercice 9. Montrer en utilisant la définition que si, $\forall n \in \mathbb{N}, u_n \geq 0$ et $u_n \to a$, alors $a \geq 0$ et $\sqrt{u_n} \to \sqrt{a}$.

Exercice 10. Montrer en utilisant la définition que $(\sqrt{n})_n$ tend vers $+\infty$.

Exercice 11. Étudier la convergence des suites de termes généraux suivantes.

a)
$$(-1)^{n} \frac{n+1}{n}$$
 g) $\frac{n}{2} \sin \frac{n\pi}{2}$ l) $\frac{\sqrt{n}-1}{\sqrt{n}+1}$, b) $\frac{n}{n+1}$ h) $\frac{\sin^{2}n-\cos^{3}n}{n}$ m) ne^{-n} , c) $\frac{1}{n^{2}+1}$ i) $\sin(\frac{2n\pi}{3})$ n) $\frac{2^{n}-3^{n+1}}{5^{2n}}$, d) $\frac{n}{n^{2}+1}$ j) $\frac{E(nx)}{n}$, $x \in \mathbb{R}$, o) $\ln\left(\frac{1+n}{n^{2}}\right)$, e) $n-\sqrt{n^{2}-n}$ k) $\frac{\cos(n\theta)}{n}$, p) $\frac{n^{2}+(-1)^{n}\sqrt{n}}{2n+1}$.

f) $\sqrt{n(n+1)} - n$, n, $Rappel: \sin(k\pi) = 0, \forall k \in \mathbb{N}; \sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$.

Exercice 12. Montrer que si pour tout $n \in \mathbb{N}$ $u_n > 0$ et si $u_n \to 0$ alors $\frac{1}{u_n} \to +\infty$.

Exercice 13. Soient u_0 et v_0 deux réels tels que $u_0 < v_0$. On définit les suites u et v par $u_{n+1} = \frac{u_n + v_n}{2}$ et $v_{n+1} = \frac{u_n + 2v_n}{3}$. Montrer que, pour tout $n \in \mathbb{N}$, $u_n < u_{n+1} < v_{n+1} < v_n$. En déduire que ces deux suites convergent et ont la même limite.

Exercice 14. Montrer que

$$\bigcap_{n>1} \left[1 - \frac{1}{n}, 2 + \frac{1}{n} \right] = [1, 2].$$

Exercice 15. Pour tout $n \in \mathbb{N}^*$, on pose

$$u_n = \frac{1}{n} + \frac{1}{n + \sqrt{1}} + \dots + \frac{1}{n + \sqrt{n}}.$$

Montrer que la suite u est convergente et calculer sa limite. (Indication : trouver un encadrement et utiliser le théorème des gendarmes.)

Exercice 16. Soit $u_n = \prod_{k=1}^n \cos \frac{1}{2^k} = \cos \frac{1}{2} \times \cdots \times \cos \frac{1}{2^n}$. Etudier la convergence de cette suite et calculer sa limite éventuelle. (Indication : utiliser la relation $\sin(2x) = 2\sin x \cos x$.)

Exercice 17. Soient a et b les suites définies par $0 < a_0 < b_0$, et pour tout $n \in \mathbb{N}$ par $a_{n+1} = \sqrt{a_n b_n}$ et $b_{n+1} = \frac{a_n + b_n}{2}$.

- a) Montrer que pour tout $n \in \mathbb{N}$ on a $0 < a_n < b_n$.
- b) Montrer que a est croissante et b est décroissante.
- c) En déduire que les suites a et b convergent.
- d) Montrer que les suites a et b ont même limite.

Exercice 18. Soit A et B deux parties non vides majorées de \mathbb{R} . Montrer que $A \subset B \Longrightarrow \sup A \leq \sup B$.

Exercice 19. Si A et B sont deux parties de \mathbb{R} , on définit $A + B = \{a + b \mid a \in A, b \in B\}$.

- a) Soient A = [0, 1] et $B = \{1\}$. Déterminer $A \cup B$ et A + B.
- b) On suppose que A et B admettent chacun un plus grand élément. Montrer que A+B admet un plus grand élément et que $\max(A+B)=\max A+\max B$.

On suppose que A et B sont majorées.

- c) Montrer que $A \cup B$ et A + B sont majorées.
- d) Montrer que $\sup(A+B) = \sup A + \sup B$.
- e) Déterminer $\sup(A \cup B)$.
- f) Est-ce que $\sup(A \cap B) = \min(\sup A, \sup B)$?

Exercice 20. Soit
$$A = \left\{ \frac{1 + \cos n}{n} \mid n \in \mathbb{N}^* \right\}$$
.

- a) Soit u la suite de terme général $\frac{1+\cos n}{n}$, $n \ge 1$. Est-elle convergente ? Si oui, quelle est sa limite ?
- **b)** Montrer que A admet un max.
- c) Calculer inf A. A admet-il un min?

Exercice 21. Pour chacune des affirmations suivantes dire si elle est vraie ou fausse. (Justifier la réponse.)

- a) Une suite convergente dont tous les termes sont des entiers est constante à partir d'un certain rang.
- b) Si pour tout $p \in \mathbb{N}$, u_{2p} est positif et u_{2p+1} est négatif, alors la suite u diverge.
- c) Si $\lim_{n\to+\infty} nu_n = 1$ alors la suite u converge.
- d) Si la suite $(nu_n)_n$ est bornée alors la suite u converge.
- e) Si u est croissante, alors u tend vers $+\infty$.
- f) Une suite non majorée tend vers $+\infty$.
- g) Si $u_n \to \frac{1}{2}$ alors la suite u est positive partir d'un certain rang.
- h) Toute suite monotone est convergente.
- i) Toute suite croissante et majorée est bornée.
- **j)** Si la suite u est décroissante et $\forall n \in \mathbb{N} \ u_n \geq 0$, alors $u_n \to 0$.
- k) Une suite à termes positifs qui converge vers 0 est décroissante à partir d'un certain rang.
- 1) Si $\forall n \in \mathbb{N}, u_n < v_n \text{ et } v_n \to 0 \text{ alors } u_n \to 0.$
- **m)** Si la suite $u_n \to l$ alors $u_{n+1} u_n \to 0$.
- n) Si la suite $(|u_n|)_n$ converge alors la suite $(u_n)_n$ converge.

- o) Si les suites u et v divergent alors la suite u + v diverge.
- **p)** Si les suites u et v divergent alors la suite uv diverge.
- q) Si la suite u converge et la suite v diverge alors la suite u + v diverge.
- r) Si la suite u converge et la suite v diverge alors la suite uv diverge.
- s) Pour toute suite v, si $u_n \to 0$ alors $u_n v_n \to 0$.
- t) Si $u_n v_n \to 0$ alors soit $u_n \to 0$ soit $v_n \to 0$. (Indication: considérer l'exemple $u_n = (1 + (-1)^n)/2$, $v_n = (1 (-1)^n)/2$.)
- **u)** Si $u_n \to l$ et $\forall n \in \mathbb{N}, u_n > 0$ alors l > 0.
- v) Si u est une suite croissante et $\forall n \in \mathbb{N} \ u_n \leq 7 \ \text{alors} \ u_n \to 7$.
- w) On ne modifie pas le fait qu'une suite converge ou diverge en modifiant un nombre fini de ses termes.

Exercice 22. Soit a_n une suite de réels positifs telle que :

$$\forall m \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad a_{m+n} \le a_m + a_n.$$

a) Soit $p \in \mathbb{N}^*$, montrer par récurrence que pour tout $n \in \mathbb{N}$, $a_{np} \leq na_p$.

On rappelle que pour deux entiers naturels non nuls n et p quelconques, il existe deux entiers naturels q et r tels que n = pq + r et $0 \le r \le p - 1$.

b) Montrer que

$$\forall n \in \mathbb{N}^*, \quad \forall p \in \mathbb{N}^*, \quad \exists q \in \mathbb{N}, \quad \exists r \in \{0, \dots, p-1\}, \quad a_n \leq qa_n + a_r.$$

c) En déduire que

$$\forall n \in \mathbb{N}^*, \quad \forall p \in \mathbb{N}^*, \quad \exists r \in \{0, \dots, p-1\}, \quad \frac{a_n}{n} \le \frac{a_p}{p} + \frac{a_r}{n},$$

et donc que

$$\forall n \in \mathbb{N}^*, \quad \forall p \in \mathbb{N}^*, \quad \frac{a_n}{n} \le \frac{a_p}{p} + \frac{\max\{a_0, \dots, a_{p-1}\}}{n}.$$

- d) Justifier que l'ensemble $\left\{\frac{a_k}{k} \mid k \in \mathbb{N}^*\right\}$ admet une borne inférieure qu'on notera λ . Dans les deux questions qui suivent, ε désigne un réel strictement positif fixé.
- e) Montrer qu'il existe $p \in \mathbb{N}^*$ tel que $\frac{a_p}{p} < \lambda + \frac{\varepsilon}{2}$.
- \mathbf{f}) En déduire que, pour ce p, on a

$$\forall n \in \mathbb{N}^*, \quad \lambda \le \frac{a_n}{n} < \lambda + \frac{\varepsilon}{2} + \frac{\max\{a_0, \dots, a_{p-1}\}}{n}.$$

g) Montrer que $\lim_{n\to+\infty} \frac{a_n}{n} = \lambda$.

Exercice 23. Montrer que si une suite u a ses deux suites extraites $(u_{2n})_n$ et $(u_{2n+1})_n$ qui convergent et ont la même limite l alors la suite u converge vers l.

Exercice 24. Soit $(u_n)_n$ une suite telle que les suites extraites $(u_{2n})_n$, $(u_{2n+1})_n$ et $(u_{3n})_n$ convergent. Montrer que $(u_n)_n$ converge. (Indication : faire intervenir les suites extraites $(u_{6n})_n$ et $(u_{6n+3})_n$.)

Exercice 25. Soit $(u_n)_n$ une suite convergente vers l. Pour tout $n \in \mathbb{N}$, on pose $v_n = \frac{1}{n+1} \sum_{0}^{n} u_p$ (v est la moyenne de Césaro de u). Montrer que la suite v converge vers l.

Indications : traduire la convergence de la suite u_n vers l : " $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \dots$ ", puis découper la somme qui définit v_n avec l'entier n_0 introduit dans la définition en deux sommes et enfin étudier la limite de chacune des 2 sommes.

Exercice 26. Soit $A \subset \mathbb{R}$. On rappelle que A est dense dans \mathbb{R} si pour tous x, y dans \mathbb{R} avec x < y il existe $a \in A$ tel que x < a < y. Montrer qu'un ensemble A est dense si et seulement si tout élément de \mathbb{R} est la limite d'une suite d'éléments de A, c'est-à-dire pour tout $x \in \mathbb{R}$ il existe une suite $(a_n)_n \in A^{\mathbb{N}}$ telle que $a_n \to x$.